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Abstract

We present an efficient method for learning probabilistic graphical models. Inspired
by statistical physics, we develop a technique that avoids the spin glass behavior of
Boltzmann machines, allowing efficient sampling and training. We compare the
proposed technique against standard training methods, and report improvements in
the speed of training and retrieval of samples, and in generalization power.

1 Introduction

Machine learning has emerged as a disruptive technology transforming industries, society and science.
In the long term, unsupervised learning is expected to be much more important than supervised
learning, where most of the research and investment is put nowadays [1]]. One of the most important
models in unsupervised learning is Boltzmann machines, which have especially prospective properties.
A Boltzmann machine with latent neurons allows for feature extraction, while its learning algorithm
is remarkably simple [2].

Yet training of Boltzmann machines, as a particular instance of probabilistic graphical models [3[], is
hard due to the need of obtaining samples from the model built. In general, the averages required
for training cannot be computed exactly for large models due to their large dimensionality, and even
numerical methods like Markov Chain Monte Carlo are costly. This hardness is a consequence
of the equivalence of Boltzmann machines with spin glasses (SG) [4]. It is widely known in
statistical mechanics that determining the lowest-energy state of a SG is an NP-complete problem [5]].
Despite this, many methods have been developed that are based in heuristics [[6] and statistical
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physics [[7, 18, 19, [10]]. In fact, the problem of sampling of Boltzmann machines is so important and
difficult that task-specific hardware systems have been developed for it. These include systems
operating in the regime of classical physics [L1} 12} [13}[14], as well as based on quantum principles
or hybrid classical-quantum machines [15].

A key point we raise in this paper is that Boltzmann machines reproducing typical training data
probability distributions cannot be in a true spin glass phase. The fact that current methods of training
of restricted Boltzmann machines (RBMs) lead to outputs that have a behavior closer to a spin glass
than the training data they attempt to learn [16] points actually to a deficiency of such methods. The
SK spin glass phase of Boltzmann machines thus constitutes an unnecessary bottleneck in learning.

Therefore, instead of pursuing the challenging problem of efficient sampling in spin glasses, we take
a radically different approach: we constrain couplings in our models in such a way to avoid problems
with a spin glass phase in the first place. This restriction suggests a new algorithm for estimating
the gradient of the log-likelihood function, which we employ to train RBMs in various datasets. In
all of the experiments reported, our combination of Restricted Associations (RA) and training by
Pattern-InDuced correlations (PID) outperforms standard Contrastive Divergence and its variants
both in training time and quality, showing remarkable generalization ability.

2 RAPID: Regularized Associations and Pattern-InDuced correlations

We start by recalling the standard Boltzmann machine, which consists of N binary neurons o (here
we use values o; = & 1 which are standard in physics of spin systems), which can be separated into
disjoint sets of visible and hidden neurons, & = (v, h). An energy is associated to every configuration
of neurons o via an energy function, Fy(o) = — Zg Wijoi05 — va b;jo;, where the weights W
describe neuron-neuron connections, or associations, and b; are local biases. The probability of having
a visible configuration v is given by a Boltzmann distribution Py(v) = 3", e Fe(@) /5™ e~ Folo),
Since the main problems we discuss are related to the distribution of weights W;;, in the following
we will neglect the biases b;.

The goal of training is to determine the parameters 6 such that Py represents as close as possible
the distribution P%® ynderlying some dataset 7. This is usually done by minimizing the negative
log-likelihood, £y = — Y-, .+ P*%(v) log Py(v), with respect to the parameters of the model. As

PYt s independent of these variables, the minimization is only performed to log Py(v). The
derivative of this terms takes the form Oy, ; log Py(v) = (050) 4. — (Ti0j) 10401 Where the bracket
(-) denotes the expectation value with respect to either the training data in 7 or the model given by
Py. Sampling from such distributions is the main challenge of Boltzmann machines as discussed
previously. Restricted Boltzmann machines were introduced in order to facilitate sampling from
(0§0}) 4ua- However, even for RBMs a good estimation of (o;0;) . is still very difficult if the
weights are random and thus the system is in the Sherrington-Kirkpatrick (SK) spin glass phase [4].

2.1 Regularized Associations

Perhaps the most profound result stemming from the statistical physics perspective on Boltzmann
machines is the understanding of the origin of the sampling hardness of such models. A Boltzmann
machine with uniformly-random weights (the typical starting point when training) is equivalent to
the Ising model with long-range random couplings, known as the SK spin glass model. Determining
the lowest-energy configuration of a general SKSG model defined on a non-planar graph is known
to be an NP-complete hard problem [5]]. The SG phase is related to the so-called spin frustration,
which occurs when there is no configuration that minimizes the energy of all interactions at the
same time. With increasing frustration, the number of low energy minima grows exponentially [[17]].
Mattis solved the frustration problem in a very simple model [18]]: choose one configuration (or
pattern) &€ € {—1,1} at random, and define Wi = &:€;. The unique ground state of the spin model
defined by such couplings is £. Unfortunately, such construction is too constrained, and presents a
too strong overfitting to £. Here we employ a generalization of Mattis’ approach, where the weights
are constructed from an arbitrary number K of patterns &)
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The form of the weights in Eq. (T) is well known in machine learning from the Hopfield model of
associative memory [19,20] which implements the Hebbian rule that “neurons wire together if they
fire together” [21]. Although a main focus in the Hopfield model is on retrieval of fixed patterns
from dynamics of neural networks instead of generalising data distributions (the case of BMs), both
models are closely related [22]. The number of independent patterns that can be faithfully retrieved
from a Hopfield model was thoroughly studied in [23]. For very low temperatures, the Hopfield
model is in “retrieval phase” if K/N < 0.12 and in the spin-glass phase where patterns cannot be
faithfully retrieved for K/N > 0.12. Following those results, for a given training data problem, we
experimentally choose K high enough to faithfully represent the data probability distribution, but
keeping the ratio K /N below the threshold that will lead to a spin-glass behavior. In the case of
RBMs, this ratio can be lowered arbitrarily for a desired number of patterns K by increasing the
number of hidden neurons accordingly.

2.2 Training via Pattern-InDuced correlations

As mentioned above, it is easy to characterize spin models with weights of the form of Eq. (I)
whenever one has a small number of patterns K: in fact, when K < N the patterns £*) are low-
energy configurations themselves. A consequence of this is that the model averages required for

training, (0;0;) ..;» can be well approximated by

K
1 k) o (k
(010 ) mosa 72 D 6485 @)
k=1

This suggests a natural procedure for minimizing Ly: first, choose K <N random patterns and
compute the model’s weights via Eq. (I)); second, compute the derivatives of Ly with respect to

each individual pattern component £§k) and replace all averages over the model by averages over the

patterns, as in Eq. (2); third, update §§k) according to such gradients, and from them recompute new
valid patterns.

We note that such procedure does not need any MCMC sampling, and this already gives good results
in learning simple datasets. However, we have observed that when learning more complex datasets
the best results were obtained when training with PID was complemented with a few steps of Gibbs
sampling of the patterns &%),

The novelty of the combination of Restricted Associations and training via Pattern-InDuced cor-
relations (RAPID) comes from avoiding the SK spin glass phase at any moment of training. That
means that Eq. (I) is not novel in itself, but the way of utilizing is: for instance, when training RBMs,
we would scale H to keep a low K/N ratio, relax pattern variables for easier learning and exploit
regularized patterns for approximating the low-energy space in an efficient way.

3 Results

3.1 Benchmark with exact training: 4x4 Stripes

We first start by applying RAPID for learning a small dataset, consisting of 4 x 4 images with full
vertical stripes. The dataset contains a total of 16 inequivalent images. While this dataset may seem
small, it allows to compute exactly the denominator ) _ e~ P0(@) of the Boltzmann distribution. This
enables the exact computation of the loss function Ly, and thus to employ the exact gradients during
training. Therefore, in this small dataset we can contrast RAPID with training via exact stochastic
gradient descent. We additionally compare to standard methods for training RBMs, namely CD and
PCD with 10 steps of Gibbs sampling and (in the case of PCD) 2048 fantasy particles.

To perform an accuracy test on the machines, we reconstruct corrupted images from the dataset.
Then, we compute the Hamming distance (HD) between the reconstructed and the original image. In
Figs.|lajand [Ibl we present results for the HD when reconstructing image from the training and test
sets, respectively. RAPID allows to learn the dataset in a surprisingly small number of epochs (~20
epochs) compared to the rest of training methods (O(103) epochs). One may consider that, given the
construction of the machine by means of the Hebbian rule, the machine would be prone to memorize
the images of the dataset. However, seeing that the HD for the test set decreases in similar fashion to
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Figure 1: Training effectiveness of RAPID. Hamming distance between reconstructions of partial
images and expected results in the (a) training and (b) test sets of the 4 x 4 Bars dataset. The shaded
areas around the lines denote the standard deviation of 100 independent training instances. Images
in the test set—a total of four—are never used during the training phase, and they are chosen so as
to have no relation (via negation) to any images of the training set. In all cases, the models tested
have H = 1000 hidden neurons, and are trained in the 4 x 4 stripes dataset. For the case training with
RAPID (in blue), we employ K = 8 patterns).

the training set shows that RAPID allows to generalize in a faster way that the remaining methods,
including training with the exact gradients of the log-likelihood.

3.2 Learning complex datasets

We now focus applying RAPID to learn more complex datasets. First, we consider the 12 x 12
Bars and Stripes dataset, which consists in 8188 images containing images of only vertical bars or
horizontal stripes. As the complexity of the problem to solve increases, one needs to increase the
number of auxiliary patterns K and, in order to keep the frustration of the model low, the number of
hidden neurons H of the RBM. In Fig.[2a) we show the results for the HD of reconstructed images,
analogous to the graphs shown in Fig. [T} The HD of the reconstructions and the target images for the
training and test sets decrease parallel to each other, proving that the model is indeed learning and not
memorizing the images of the training set. Moreover, when generating samples of the model from
free dynamics, we observe instances that were not contained in the training set, further demonstrating
the generalization ability of RAPID-trained RBMs.

Next, we train our machine to generate the MNIST dataset. We show some samples returned after
training in Fig.[2b] Despite the necessary increase in K and H for having enough expressivity without
increasing frustration, we keep observing a speedup in training.

4 Conclusions

We have analyzed the training of Boltzmann machines under the perspective of statistical physics.
Given that standard datasets do not exhibit exotic phenomena such as spin glass phases, we argue that
training models with such phenomena is highly inefficient. To that end, we have presented RAPID,
a method to control the frustration of spin models and to train them without the need of expensive
sampling methods. Furthermore, we have shown how restricted Boltzmann machines trained with
RAPID outperform standard training techniques in both learning speed and generalization ability.

Although the experiments focused on restricted Boltzmann machines, RAPID is applicable to arbitrary
Boltzmann machines. We thus expect that RAPID, or variations of it, prove important in the use of
deep Boltzmann machines for unsupervised learning tasks.
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Figure 2: (a) Hamming distance between reconstructed images and expected results for the 12 x 12
Bars and Stripes dataset. The model employed is an RBM with 1000 hidden neurons, trained with
30-pattern RAPID. The shaded regions denote the standard deviations in 15 independent training
instances. The inset shows instances sampled from the model. The leftmost samples, surrounded in
red, were not part of the training set. (b) Samples drawn from an RBM trained with RAPID in the
binarized-MNIST dataset. The RBM has 3000 hidden neurons, and the weights are constructed from
K =200 patterns.
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