
Applications of Deep Learning Methodology in
Real-Time Completion Event Recognition

Yuchang Shen
Occidental Petroleum Corporation

The Woodlands, TX 77380
Yuchang_Shen@oxy.com

Dingzhou Cao
Occidental Petroleum Corporation

The Woodlands, TX 77380
Dingzhou_Cao@oxy.com

Kate Ruddy
Occidental Petroleum Corporation

The Woodlands, TX 77380
Kate_Ruddy@oxy.com

Abstract

Historically, the real-time hydraulic fracturing analytics system (Real-Time Com-
pletion system, RTC) rely heavily on manual labelled data. The manual tasks,
including fracture stage start/end labeling and ball pumpdown/seat event labeling,
suffer from human bias and inconsistent errors, and can easily take up to days
to finish. In this paper we developed two machine learning models, the CNN
model that detect the stage start and end and the U-Net model that identify the ball
pumpdown and seat operation, to fill the manual task gaps and pave the way for the
automated stage-wise key performance indicators (KPIs) report generator. These
tasks are performed based on the slurry rate and wellhead pressure, which enable
the real-time automated stage-wise KPI analysis without human bias, and they
also lay the foundation for further advanced analysis regarding real time hydraulic
fracture operational decision making.

1 Introduction

Multi-stage hydraulic fracturing is the common operation to maximize the reservoir contact and
enhance the fluid flow for shale oil and gas wells. During hydraulic fracturing operations, the pumping
data (pressures, rates, volumes et al.) is recorded for real-time monitoring and analytics purposes.
Our in-house real-time hydraulic fracturing analytics system, the Real-Time Completion (RTC)
system, pulls such hydraulic fracturing pumping data from frac van, analyzes with advanced analytics
models, generates meaningful analytics results, and finally pushes to a web-based UI for end users to
consume, which aids real-time decision making and drives further well completion efficiency. With
today’s communication technology, as well as the powerful computation hardware, the RTC system
with advanced analytics models plays an increasing important role in today’s frac job optimization.
For example, Paryani et al. Paryani et al. (2018) propose the real-time frac modeling based on the
real-time hydraulic fracturing pumping data so as to optimize the frac job in real-time; Ben et al. Ben
et al. (2020a) and Ben et al. (2020b) predict the hydraulic fracturing pressure using machine learning
methodology and conduct frac job cost optimization in real-time based on the pressure prediction.
In this paper, we present two machine learning models that automate the manual tasks in the RTC
pipeline, and pave the way to the real-time hydraulic fracture stage-wise KPI auto-generator (Shen et
al. (2020)). The two Machine Learning (ML) models detects the stage start/end and identifies the ball
pumpdown/seat respectively. Each of these models are built by various techniques including deep
learning methodology such as convolutional neural network (CNN) and the U-Net architecture. The

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

purpose is to automate the current RTC pipeline, dispelling the need for manual labeling of stage start
and end and eliminating human bias and errors. It fills the manual task gaps in the RTC workflow
and lays the foundation for the further advanced analysis (Ben et al. (2020a) and Ben et al. (2020b)),
as well as paves the way for a fully automated RTC system.

2 Current state of art

Ramirez et al. (2019) and Lopez et al. (2019) provides an initial study on the stage start/end detection.
They proposed to use the logistic regression and SVM to classify each time stamp as inside or outside
a stage then detect the stage start/end accordingly and they achieved an accuracy of 90% from training
and validation sets (non-blind test). However, accuracy is not a reliable metric in this case since it is
describing the performance of labeling each time stamp rather than labeling the start flag and the end
flag. We advanced the technique using deep learning and we designed a more reliable metric called
flag-wise accuracy to evaluate the performance of the models in this problem. Our model achieved an
F1 score of 0.95 and a flag-wise accuracy of 98.5%. To the authors’ knowledge, there are no previous
study on identifying the ball pumpdown/seat operation.

3 Methods and key results

3.1 Stage start/end detection

When a human is trying to identify whether a time stamp is inside or outside a stage, he/she not only
looks at the data at that specific time, but also look at the previous and subsequent data. We need
to look at continuous streams of data to determine the properties of each time stamp. We follow
this strategy to structure the problem. First we manually label each time stamp as 0 or 1, indicating
whether it is outside or inside a stage, respectively. With these labels we can easily identify the start
and the end of a stage by searching for the time when the label changes from 0 to 1 or from 1 to 0.
After the labeling, we extract the samples from the data using a fixed-length sliding window (in this
case a 50 seconds window). Ramirez et al. (2019) suggested that the slurry rate and the wellhead
pressure are among the best features for the stage start/end detection. Other features such as the clean
volume and the proppant concentration might be helpful, but since the data quality of these channels
are very limited compared to the slurry rate and the wellhead pressure, we chose the latter two as our
primary features. In addition to the two features, we add the first and second derivatives of both the
slurry rate and the wellhead pressure to give the model additional information. The samples extracted
from the data are now matrices with six rows and a fixed number of columns. We label each sample
using the time stamp label corresponding to the middle column of the matrix. These sample matrices
resemble the data structure of images and will later be fed into a CNN for the image classification
task. Since the raw data contains a lot of spikes which will seriously impact the performance, we
apply a median filter to get rid of the spikes before sending the data into the model. Figure 1 shows
the procedure of extracting the data.

The model we are using is the convolutional neural network and it is implemented using TensorFlow.
The network structure consists of an input layer, two convolutional layers, a max pool layer with a
dropout rate of 0.3, a dense layer with a dropout rate of 0.3 and an output layer. The convolutional
layers will capture the higher level features from the training samples and pass them to the output
layer which gives the probability of a sample belonging to either of the two classes according to
the softmax function. The first convolutional layer has 8 filters with size 10 × 6, and the second
convolutional layer has 16 filters with the same size. The dense layer has 64 neurons with the ReLU
activation. The loss function we are using is the cross entropy function, and the model is trained by
the Adam optimizer with a learning rate of 0.001 for 5 epochs.

In order to quantify the performance, we use two different metrics to measure the accuracy. The first
one is what we call time-stamp-wise accuracy. The time-stamp-wise accuracy is calculated as the
number of time stamps with correct label divided by the number of total time stamps. It measures the
accuracy in terms of the duration of a stage. The second metric is the flag-wise accuracy. In order to
calculate the flag-wise accuracy, we define a time window called the tolerance window, which has a
fixed duration centered at a true flag. Any predicted flags located within the tolerance window are
considered accurate. The flag-wise accuracy is calculated as the number of predicted flags within the
tolerance window divided by the number of total flags. This metric sheds light on the performance of

2

Figure 1: Sample extraction and labeling.

Figure 2: Left: time-stamp-wise accuracy. Right: flag-wise accuracy.

the model in terms of the start and end flag, and we can control the resolution by adjusting the length
of the tolerance window. The two metrics are illustrated in Figure 2.

Although flag-wise-accuracy better measures with the start/end identification performance, the
training process is designed to correspond to the time-stamp-wise accuracy, in order to keep the
dataset from becoming unbalanced. If we use the flag-wise accuracy for the training process, we will
have to create labels that directly correspond to the start and end flag, of which there are only hundreds
among millions of data points. Conversely, the time-stamp-wise accuracy allows for labeling as a
relatively more balanced dataset, since it corresponds to the duration of the stage (60% of data points
are within a stage, and 40% are outside a stage). Training on this more balanced dataset yields much
better performance.

Figure 3 shows a stage with its true label (blue solid line) and the predicted label (yellow dashed
line). The predicted label accurately mark the stage. In order to make full use of the dataset for
blind test, we use the five-fold cross-validation technique to evaluate the performance. The dataset is
partitioned into five parts. In each trial, the model is trained on four of the five parts then produces
predictions on the remaining part. With five trials, we have a full blind test result on the whole dataset,
and we use that result to indicate the performance of our model. This performance evaluated by
the cross-validation also helps to prevent overfitting. Table 1 shows the flag-wise accuracies with
different tolerance window. The model achieves an F1 score of 0.95, and a flag-wise accuracy of
98.5% with a tolerance window of ten seconds.

3.2 Ball pumpdown/seat detection

The ball pumpdown/seat event recognition is a two-step strategy. The first step is to tell if there is a
ball pumpdown/seat in a stage, and the second step is to locate the end of the ball pumpdown/seat if

3

Figure 3: A stage with its true labels and predicted labels. The number at the lower-right corner with
the scientific notation indicates the Unix timestamp.

Table 1: Flag-wise accuracies of the blind test results with different tolerance windows.
Tolerance Flag-wise accuracy Accurate flags Total flags
25 seconds 99.7% 646 648
20 seconds 99.3% 644 648
15 seconds 99.0% 642 648
10 seconds 98.5% 639 648
5 seconds 92.3% 598 648
3 seconds 68.1% 441 648

there is one. To achieve the first step, we borrow the idea from Cao et al. (2020) where the authors
used the image segmentation method to locate the downlink sequences. Compared to the downlink
recognition, the pattern for the ball pumpdown/seat is more obscure and it only counts for a small
portion of a whole stage. It is less likely for the image segmentation method to surgically locate
the ball pumpdown/seat event, but it is sufficient to tell if a ball pumpdown/seat event exists in a
stage. The second step can be achieved by a rule-based selection given the information from the
image segmentation. The first step of the ball pumpdown/seat recognition is formulated as an image
segmentation problem, and we will need to reconstruct the time series data into images. Different
from the stage start/end detection, we are not feeding the values of the time series data into the deep
learning model. Instead, we are feeding the time series plot as images into the model. For each plot
image, we assign a corresponding mask to indicate the location of the ball pumpdown/seat pattern.
Since the ball pumpdown/seat event always happens at the beginning of a stage, we take the data
within the first hour of each stage as the samples. Figure 4 shows an example of a ball pumpdown/seat
event and the red vertical line indicates where the ball pumpdown/seat ends. Since in the first step we
only need to tell if there is a ball pumpdown/seat or not, there is no need to mask and recognize the
whole pattern. Noticed that there is a clear ‘Z’ pattern (brown rectangle) in the slurry rate curve, and
the wellhead pressure signal is unstable compared to the slurry rate, we use the slurry rate as our only
input and we aim at looking for the ‘Z’ pattern.

Figure 4: The ball pumpdown/seat at the beginning of a stage. The number at the lower-right corner
with the scientific notation indicates the Unix timestamp.

4

Figure 5: An example of the prediction mask.

Figure 6: Mask from Figure 5 after cleaning the edge.

We follow the idea of Cao et al. (2020) and use a DL model with the U-Net architecture Ronneberger
et al. (2015) to perform the image segmentation task. Since our training dataset consists of 72 samples,
which is not enough to train the whole model, we apply the transfer learning technique and we train
our model based on the pre-trained U-Net model with skip-connections (ResNet-34). All these 72
samples have a ball pumpdown/seat in them. After training the model, we introduce an extra set of
testing dataset. Among the 107 samples in the extra testing dataset, there are 9 samples that have a
ball pumpdown/seat phase, and the rest of the samples do not. With that we have two parts in our
evaluation. The first part is the blind test of the training dataset, and the second part comes from the
extra testing dataset. Result shows that this model alone achieves very good true positive rate (79
out of 81) in determining whether or not there is a ball pumpdown/seat. But it also has a high false
positive rate (8 out of 98). Figure 5 shows an example of the prediction mask. In order to lower the
false positive rate, we borrow the 2nd opinion mechanism from Cao et al. (2020) and introduce a
second model to vote on the decision.

The second model is exactly the same as the first one except that it takes in the wellhead pressure
signal along with the slurry rate through an additional channel. The input image is now an RGB
image, where the R channel is the wellhead pressure, the G channel is the slurry rate, and the B
channel is left blank. With the opinion from the second model, the two models together achieve an F1
score of 0.97, with a true positive rate of 0.96 (78 out of 81) and a false positive rate of 0.03 (3 out of
98), which is a better performance compared to a single model.

After determining the existence of the ball pumpdown/seat, the second step is to locate the end of
the event. The masks given by the U-Net model provides a rough information of where the ball
pumpdown/seat event happens, and we pinpoint the end of the event based on that information. In
order to get the location information from the mask, we first project the prediction mask to 1D in
correspondence with the time axis. For each column from a mask, if the fraction of pixels that are
marked as positive exceeds a certain threshold, we consider the time stamp that correspond to the
column as positive. The threshold for our tests is 95%. Figure 6 shows the mask from Figure 5 after
cleaning the edge.

Next we scan the signals from the midpoint of the mask using a set of numerical rules suggested by
the engineers. If such a time stamp exists, we mark it as the end of the ball pumpdown/seat. The
blue vertical line in Figure 7 shows the predicted ball pumpdown/seat ending point for the sample in
Figure 4. Our two-step strategy achieves 94% of accuracy (173 out of 179 samples correct).

4 Conclusion

The work in this expanded abstract automates the manual tasks of labeling the start and end of a stage
and the end of the ball pumpdown/seat event with high accuracies. It fills the manual task gaps in the
RTC workflow and lays the foundation for the further advanced analysis, as well as paves the way for
a fully automated RTC system.

5

Figure 7: The final ball pumpdown/seat ending point prediction for Figure 4.

References
Ben, Y., Perrotte, P., Mistry, B., Ezzatabadipour, M., Ali, I., Sankaran, S., Harlin, C. and Cao, D. Real

Time Hydraulic Fracturing Pressure Prediction with Machine Learning. SPE Hydraulic Fracturing
Technology Conference and Exhibition, 4-6 February, The Woodlands, TX, USA. SPE-199699-MS.
2020a.

Ben, Y., Sankaran S., Harlin C., Perrotte, P. Real Time Completion Cost Optimization Using Model
Predictive Control. SPE Hydraulic Fracturing Technology Conference and Exhibition, 4-6 February,
The Woodlands, TX, USA. SPE-199688-MS. 2020b.

Cao, D., Hender, D., Ariabod, S., James, C., Ben, Y. and Lee Micheal. The Development an Appli-
cation of Real-Time Deep Learning models to Drive Directional Drilling Efficiency. SPE/IADC
International Drilling Conference and Exhibition, 3-5 March, Galveston, TX, USA. SPE-199584-
MS. 2020.

Lopez, J. and Ramirez, A. Machine Learning Helps Pinpoint Events from Fracturing Data. Data
Science and Digital Engineering in Upstream Oil and Gas. Retrieved from https://www.spe.
org/en/dsde/dsde-article-detail-page/?art=5689. 2019.

Paryani, M., Sia, D., Mistry, B., Fairchild, D. and Ouenes, A. Real-Time Completion Optimization of
Fracture Treatment Using Commonly Available Surface Drilling and Fracing Data. SPE Canada
Unconventional Resources Conference, 13-14 March, Calgary, Alberta, Canada. 2018.

Ramirez, A. and Iriarte, J. Event Recognition on Time Series Frac Data Using Machine Learning.
SPE Western Regional Meeting, 23-26 April, San Jose, CA, USA. 2019.

Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation.
International Conference on Medical image computing and computer-assisted intervention 2015
Oct 5 (pp. 234-241). Springer, Cham. 2015.

Shen, Y., Cao, D., Ruddy, K. and Teixeira De Moraes, L. Deep Learning Based Hydraulic Fracture
Event Recognition Enables Real-Time Automated Stage-Wise Analysis SPE Hydraulic Fracturing
Technology Conference and Exhibition, 4-6 February, The Woodlands, TX, USA. SPE-199738-MS.
2020.

6

https://www.spe.org/en/dsde/dsde-article-detail-page/?art=5689
https://www.spe.org/en/dsde/dsde-article-detail-page/?art=5689

	Introduction
	Current state of art
	Methods and key results
	Stage start/end detection
	Ball pumpdown/seat detection

	Conclusion

