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Abstract

Molecular dynamics simulations provide theoretical insight into the microscopic
behavior of materials in condensed phase and, as a predictive tool, enable the
computational design of new compounds. However, because of the large temporal
and spatial scales of physical processes in materials, atomistic simulations are
often computationally infeasible to predict phenomena at long time-scale. Coarse-
graining methods allow simulating larger systems, by reducing the dimensionality
of the simulation, propagating longer timesteps, and averaging out fast motions.
We propose a generative modeling framework based on auto-encoders to unify the
tasks of learning discrete coarse-grained variables and decoding back to atomistic
details.

1 Introduction

Coarse-Grained (CG) molecular modeling has been used extensively to simulate complex molecular
processes at a lower cost than all-atom simulations [1, 2]. By compressing the full atomistic
model into a reduced number of pseudo atoms, CG methods focus on the slow collective atomic
motions and average out fast local motions. The use of structure-based coarse-grained strategy
enabled important theoretical insights to probe length scales that are otherwise inaccessible in
studying polymer dynamics [3–5] and lipid membranes [6].Fitting such structure-based coarse-
grained potentials have been studied extensively[7] and recently attempted by numerous machine
learning efforts[8–12]. Beyond parameterizing accurate CG potentials given a pre-defined mapping,
the choice of all-atom to CG mapping plays an important role in recovering consistent CG dynamics,
structural correlation and thermodynamics[13, 7] due to the loss of atomistic sub-ensemble and
how they coupled to the coarse-grained variables. Thus, there has been a gap to reversibly bridge
information hierarchy between simulations at different scales.

We propose to use unsupervised learning to optimize CG representations from atomistic simulations.
As a powerful unsupervised learning technique, variational auto-encoders (VAEs) compress data
through an information bottleneck [14] that continuously maps an otherwise complex data set into a
low dimensional space. auto-encoder-based models have been used to learn latent representation of
molecular configurational space [15, 16]. Compared to continuously parameterized latent space given
simple statistical priors, coarse-grained coordinates, as discrete latent variables encoded in 3D space,
need specially designed parameterization to maintain its Hamiltonian structure for discrete particle
dynamics. Inspired generative modeling perspective, we propose an unsupervised Auto-Encoder
based model to learn discrete coarse-grained latent variables for molecular configurational space.
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2 Theory

The essential idea of Coarse-Grained Auto-Encoders is to treat coarse-grained coordinates as latent
variables that are the most predictive of atomistic distributions while having a smooth underlying
free energy landscape. We show that this is achieved by minimizing the reconstruction loss and the
instantaneous mean force regularizer.

Figure 1: Variational coarse-graining auto-encoding framework. A-B The latent space of The discrete opti-
mization is done using the Gumbel-softmax reparametrization [17, 18]. C. The learning task of reconstruction
molecules conditioned on the CG variables in training time. D. Demonstration of continuously relaxation of CG
mapping as in equation 2.

A particle based coarse-grained latent space needs to preserve the structure of classical mechanical
phase space[19]. To ensure that, we make our encoding function a linear projection in Cartesian space
E(x) : R3n → R3N where n is the number of atoms and N is the desired number of coarse-grained
particles. Let x be atomistic coordinates and z be the coarse-grained coordinates. The encoding
function should satisfy the following requirements [20, 19]:

1. zik = E(x) =
∑n
j=1Eijxjk ∈ R3, i = 1 . . . N, j = 1 . . . n and k represents the Cartesian

coordinates.
2.

∑
j Eij = 1 and Eij ≥ 0

3. Each atom contributes to at most one coarse-grained variable z

where Eij defines the encoding weight toward coarse-grained variables, j is atom index , i is the
coarse-grained particle index. Requirement (2) defines the coarse-grained variables to be the center
of geometries of contributing atoms. In order to maintain the momentum space consistency based on

the coarse-grained mapping, the coarse-grained masses are redefined as Mi = (
∑
j

E2
ij

mj
)−1 [20, 19]

(mj is the mass of atom j) and this definition of mass is a corollary of requirement (3).

The encoder function parameters are initialized randomly as atom-wise vectors φ which are
continuously parameterized as one-hot assignment Cij with Gumbel-softmax reparametriza-
tion and the coarse-graining encoding weights are obtained by normalizing over the to-
tal number of contributing atoms per coarse-grained atoms to satisfy requirement (2):

Eij =
Cij∑n
j Cij

(1) Cij =
e(logφij+gi)/τ∑
j e

(logφij+gi)/τ
(2)

where gi is sampled from Gumbel distribution via inverse transformation gi = −log(−log(ui)) and
ui is sampled from uniform distribution from 0 to 1. During training τ is gradually decreased and the
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one-hot categorical encoding Cij is the atom-wise discrete Coarse-Graining one-hot vector in the
limit of small τ , so that requirement (3) is satisfied.

For the decoding of atomistic coordinates conditioned on coarse-grained coordinates, we opt for
a simple decoding approach via geometrical projection using a matrix D of dimension n by N
that maps coarse-grained variables back to the original space so that x̂ = D(z) =

∑i=N
i=1 Djizik

where x̂ is the reconstructed atomistic frame. Hence, both the encoding and decoding mappings are
deterministic. Although deterministic reconstruction via a low dimensional space leads to irreversible
information loss that is analogous to mapping entropy introduced in Shell et al [21], the decoder and
encoder functions are sufficient to decode to the mean underlying atomistic configurations based on
maximum likelihood and hence minimize the information loss due to coarse-graining.

LAE =
1

N
Ex∼P (x)[‖D((E(x))− x‖22] (3)

The counterpart of the regularization term in VAE is the Relative Entropy framework[21] in the
coarse-graining theory. However, computing the normalization constant is intractable for Boltzmann
distribution, main methods in developing coarse-grained model is matching the gradient in the free
energy surface to fit the potential of mean force [20]. The mean force (negative gradient of free
energy) is:

F (z) = 〈Finst〉E(x)=z = 〈F (z) + ε(z)〉〉E(x)=z = 〈−b∇V (x)〉E(x)=z (4)

In the case of coarse-graining encoding being atom-wise one-hot vectors, b = C. We propose a
gradient domain regularization by estimating the local mean forces from atomistic dynamics data
to smooth-en the coarse-grained free energy surface by minimizing the mean force and fluctuations
ε(E(x)). We regularize the learning by minimize the mean squared instantaneous forces ‖Finst‖22 ≈
‖F (E(x)) + ε(E(x))‖22 per mini-batch for a smoother coarse-grained free energy surface. By
including the instantaneous force loss, we present a regularized loss function that is optimized using
Algorithm 1:

LAE =
1

N
Ex∼P (x)[‖D((E(x))− x‖22 + ρ‖Finst(E(x))‖22] (5)

Algorithm 1 Variational Coarse-graining Auto-Encoding

φij , Dji, τ,∆τ ← initialize parameters
repeat

x← random mini-batch molecular dynamics frames x ∼ P (x)
gij ← Gumbel(0, 1)
Cij ← e(logφij+gij)/τ∑

j e
(logφij+gij)/τ

Eij ← Cij∑n
i Cij

g ← ∇φij ,DjiLAE(φij , Dji; τ, gij)
φij , Dji ← update parameters using gradients g
τ ← τ −∆τ

until convergence of LAE

3 Experiments

We present the unsupervised auto-encoding process for gas-phase ortho-terphenyl (OTP) and aniline
(C6H7N) in Figure 2 trained on atomistic trajectories of 3000 frames sampled by Langevin dynamics
at 300K. The results show that the optimized reconstruction loss decreases with the increasing of
coarse-graining resolutions: a few coarse-grained atoms have the potential to capture collective
motions of the underlying atomistic process. The reconstruction loss represents the lower bound
of the information capacity of coarse-grained particles to represent collective atomistic motions
through a deterministic projection and atomistic structures can be represented quite well with a few
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Figure 2: Coarse-Graining encoding and decoding for OTP (A) and aniline (B) with different resolutions. C.
average instantaneous force residue and reconstruction loss of trained model. The average mean forces increases
with the coarse-graining resolutions increasingly rough underlying free-energy landscape that involves fast
motions like bond stretching in the fine-grained descriptions.

coarse-grained particles. In the case of OTP, an intuitive 3-bead mapping that partitioned each of the
phenyl rings is learned. When the coarse-grained degrees of freedoms increase up to 4, the additional
beads are able to encode more configurational information than three-bead models and therefore
can decode back into atomistic coordinates with high accuracy. However, such encoding loses the
configuration information of the relative rotation of the two side rings, so the decoded structures
yields higher error. Learning to perform stochastic generation of atomistic coordinates conditioned on
the coarse-grained data is our future research focus. We further apply the auto-encoding framework to
a small peptide molecule trajectories of 5000 frames to test for its representation power of the critical
collective variables conditioned on coarse-grained representation. The coarse-grained latent variables
can faithfully represent different states in the Ramanchadran map as the coarse-grained resolution is
increased (Figure 3). However, the fast degrees of freedom like hydrogen atom fluctuations are lost
during the process and cannot be decoded with full resolutions.

Figure 3: Coarse-Graining encoding and decoding for alanine dipeptide. (A) coarse-graining alanine dipeptide
molecules at three different resolutions (3, 5, 8). (B) comparison of dihedral correlation (Ramachandran map)
between decoded atomistic distributions and atomistic data. The critical back-bone structures can be inferred
with high accuracy with above 5 CG atom resolution and the whole molecule has 32 atoms

4 Conclusion

In summary, we propose an Auto-Encoding framework by treating coarse-grained coordinates as
latent variables which can be sampled with coarse-grained molecular dynamics. By regularizing the
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latent space instantaneous force minimisation, we train the encoding mapping and a deterministic
decoding that can be used to map larger systems to a reduced representation and back to infer
atomistic configurations represented by coarse-grained variables. Our work opens up possibilities to
use statistical learning as a basis to bridge across multi-scale coarse-grained simulations.
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