
Learning Generalized Quasi-Geostrophic Models
Using Deep Neural Numerical Models

Redouane Lguensat, Julien Le Sommer, Sammy Metref, Emmanuel Cosme
Université Grenoble Alpes, CNRS, IRD, Grenoble INP, IGE; 38000 Grenoble, France.

{firstname.lastname}@univ-grenoble-alpes.fr

Ronan Fablet
IMT Atlantique; Lab-STICC, Brest, France
ronan.fablet@imt-atlantique.fr

Abstract

We introduce a new strategy designed to help physicists discover hidden laws
governing dynamical systems. We propose to use machine learning automatic dif-
ferentiation libraries to develop hybrid numerical models that combine components
based on prior physical knowledge with components based on neural networks. In
these architectures, named Deep Neural Numerical Models (DNNMs), the neu-
ral network components are used as building-blocks then deployed for learning
hidden variables of underlying physical laws governing dynamical systems. In
this paper, we illustrate an application of DNNMs to upper ocean dynamics, more
precisely the dynamics of a sea surface tracer, the Sea Surface Height (SSH). We
develop an advection-based fully differentiable numerical scheme, where parts of
the computations can be replaced with learnable ConvNets, and make connections
with the single-layer Quasi-Geostrophic (QG) model, a baseline theory in physical
oceanography developed decades ago.

1 Introduction

Physical modeling is still one of the most striking examples where humans are a long way ahead of
pure Machine Learning (ML) systems. Recently, numerous research efforts have been directed into
designing ML algorithms, especially deep neural networks, that can learn the basic laws of physics
from data [1, 2, 3, 4]. These works mostly agree on the importance of interpretability and respect of
physical constraints, which is still not straightforward when using black-box regressors such as neural
networks [5]. In particular, many works focused on the case where data describing the dynamical
system of interest is assumed to be governed by a system of partial differential equations (PDEs)
and where a certain physical a priori is known [6, 7, 8, 9]. From the perspective of ocean sciences,
many results shown in the aforementioned references were run on toy models, and more investigation
is needed on real ocean satellite-derived or model simulation data. Few works set the foot in this
direction: in [10] ideas from optical flow video prediction were linked to an advection-diffusion
model and considered to forecast Sea Surface Temperature (SST), while in [11, 12] the goal was
to infer the dynamics of a latent variable from partial and noisy observations of SST and Sea Level
Anomaly (SLA) respectively.

The general idea behind the present work consists in standing on the shoulders of the current
understanding of ocean variables by physical oceanographers, and include as much as we can of
their knowledge in the design of our NN architecture. In this paper, we demonstrate this strategy
on upper ocean dynamics, and more precisely the dynamics of the Sea Surface Height (SSH). We
present a fully-differential advection-diffusion architecture which generalizes the Quasi-Geostrophy

Second Workshop on Machine Learning and the Physical Sciences (NeurIPS 2019), Vancouver, Canada.



(QG) theory, one of the main baselines for forecasting SSH [13]. To ensure numerical stability and
stay close to realistic solutions, ideas from numerical schemes were considered in developing the
architecture at the expense of depth and memory load.

2 Model

Deep Neural Numerical Models Automatic differentiation (AD) has a long history in the numer-
ical modeling community. In ocean sciences for instance, OpenAD an open source code for AD
has been used to calculate adjoints of popular general circulation models such as MITgcm [14, 15].
However, these tools do not account for the training of neural networks straightforwardly, and are
in general designed to handle Fortran based codes. We refer by Deep Neural Numerical Models
(DNNMs) to fully differentiable numerical models that can incorporate easily trainable NNs. Depend-
ing on the complexity of the involved PDE equations, corresponding DNNMs require a considerable
amount of technical and engineering work, to rewrite standard numerical model codes into fully
differentiable architectures that allows training NNs by backpropagation. This could not be possible
without the ongoing flare in the Deep Learning community and in particular in AD librairies such as
PyTorch and Tensorflow [16, 17, 18]. DNNMs can range from fully NN-based architectures such
as ResNets [19, 20] to complex physical constrained architectures such as in [7, 10, 8]. Here, we
propose an advection-diffusion DNNM, that solves the following equations:

a) Φ = T1(Ψ); U = T2(Ψ); V = T3(Ψ); b)
∂Φ

∂t
+ U

∂Φ

∂x
+ V

∂Φ

∂y
= D∇2Φ, (1)

where∇2 is the 2D Laplacian operator, U and V are components of the nondivergent velocity field,
and D the diffusion coefficient. These equations describe the evolution of the flow field Ψ through
the advection-diffusion of a proxy variable Φ obtained by a given transformation T1. In case T1 is
the identity, we fall into classical models as the one studied in [10]. Using PyTorch, we develop
a DNNM where the discretization of the PDE involves the use of a 3rd order upwind scheme and
a 1st order Euler scheme in time. This scheme is stable as long as the Courant–Friedrichs–Lewy
condition (CFL) is satisfied, implying that model integration is done in small steps dt. Ψ at each dt is
obtained through the inversion of Equation 1a, for example if T1 is linear, we use Conjugate Gradient
(CG) method with constant boundary conditions. In practice, given a good initial Ψ guess, the CG is
stopped after few iterations (less than 5) to permit real-time execution and to avoid computational
burden.

QG-Net The 1-layer Quasi-geostrophic (QG) model is a reduced model that describes the evolution
of oceanic flows close to geostrophic balance [21]. Recently, this model was found to be a good
baseline to dynamically interpolate SSH fields through temporal gaps [13]. To forecast SSH dynamics,
the numerical model uses q the Potential Vorticity (PV) as a proxy variable that is advected by
Geostrophic Velocities (GV). This process is governed by the following equations [22, 23, 24]:

q =
g

f
(∇2h− h

L2
R

); Ug =
−g
f

∂h

∂y
; V g =

g

f

∂h

∂x
;

∂q

∂t
+Ug ∂q

∂x
+V g ∂q

∂y
+βV g = 0, (2)

where h is the SSH field, g is the gravity constant, f is the Coriolis parameter, LR is the first Rossby
deformation radius. Ug and V g are the Geostrophic Velocities, and βV g is a term that accounts for
meridional advection of PV. This model is in accordance with the DNNM framework presented above.
We find the correspondant T1, T2, T3 and call it QG-Net. Gradients and Laplacians were rewritten
into filter convolutions. One CG iteration can already give an acceptable solution if the guess field
respects the following pattern:

hguessdt = h0; hguesskdt = 2 ∗ h(k−1)dt − h(k−2)dt k ∈ N∗\{1}, (3)

therefore we used the equations of the CG algorithm [25] to write the equivalent of one CG iteration.
The resulting architecture is illustrated in Fig1(a,b). It benefits from high flexibility, since several
building blocks can be interchanged with ConvNets, making it a playground for several modeling
choices such as the ones exposed in the next section. Yet, due to the high memory cost of using

2



Advection

Potential 
Vorticity

Conjugate 
Gradient

Geostrophic 
Velocites

a) One-step forecasting of SSH

SSH(0) SSH(dt)q(dt)

b) QGNet for Forecasting of SSH

PV

GV

SSH(0)

q(0)

uv(0)
CG

SSH(dt)

q(dt)

GV

uv(dt)
Adv

CG

SSH(2dt)

q(2dt)

GV

uv(2dt)
Adv

CG

SSH(3dt)

q(3dt)

GV

uv(3dt)
AdvAdv

CG

SSH(4dt)

q(4dt)

GV

uv(4dt)
Adv

c) Training a QGNet with NN components

Forecasting 1 day 
dt=10min

SSH(0)
PV q(0)

uv(0)

CG

SSH(kdt)

q(kdt)

uv(kdt)
AdvAdv

Target 1-day 
 SSH forecast

SSH(144dt)

144 times

Loss

W GV NN= +

W
W

Figure 1: a) 1-step integration of QG equations; b,c) use cases of QG-Net

float64 precision and low values of dt needed for the integration step (which results in a high number
of iterations), training QG-Net in an acceptable time requires several high-end Graphics Processing
Units (GPUs).

3 Experiments

Data and Experimental details We use NATL60, a dataset from a comprehensive realistic ocean
model simulation based on NEMO ocean engine run at kilometric resolution over the North Atlantic
basin [26]. Study region is a 10◦ × 10◦ box located on the Gulf Stream, a region with challenging
physics. Four Nvidia Tesla V100 GPUs were used for the computations described in the experiments.

Discovering insights about hidden laws from data NATL60 ocean circulation model is governed
by complex physics not covered entirely by the QG theory. Yet, we want to investigate to which extent
QG-Net can reveal the limits of this theory. A simple illustrative example consists in assuming that the
PV is advected by some unknown fields U∗ and V ∗ which are first-order derivations of SSH through
a linear operator F . Concretely, given that the 2D gradient filter used to calculate the geostrophic

velocities V g and Ug in the original Python code are respectively FQG =

(
−0.25 0 0.25
−0.25 0 0.25

)
and

FT
QG its transpose, we replace FQG in QG-Net by a 6-parameters trainable filter and retrieve the

resulting filter from a training procedure using NATL60 data. This resorts to:

U∗ = − g
f

FT ~ SSH

∂y
V ∗ =

g

f

F ~ SSH

∂x
(4)

We set a 1-day SSH forecasting experiment, and use dt = 10min for QG-Net, meaning that 144
blocks are needed (Fig1 (b,c)). Note that we use shared weights across the blocks. QG-Net in this
experiment has then only 6 parameters which are the weights of F . 18 SSH images of size 200× 150
are used for training (one each 20 days from June 2012 to June 2013) using the BFGS algorithm and
a loss function L composed of three terms: i) mean square error between the QG-Net 1-day forecast

3



Train

Test

GV ConvNet

U

V

N
or

m

(a) (b)

Figure 2: a) An example of the Geostrophic velocities, their norm and the nonlinear additive
components produced by the trained ConvNet. SSH contours are shown in black. b) RMSE
distributions on the train and test datasets

and the NATL60 target 1-day forecast scaled by the variance of the target, ii) a loss penalizing velocity
fields with high divergence, iii) L2-regularization of the weights

L =
1

n
Σn

i=1

(SSH1day
i,NATL60 − SSH

1day
i,QGNet

σi(SSH
1day
NATL60)

)2

+ ‖∇.([U∗
0 , V

∗
0 ])‖22+10−3‖F‖22 (5)

The result of the optimization yields F =

(
−0.2629 0.0029 0.2592
−0.2099 −0.0008 0.2124

)
, keep in mind that we

are not expecting to find exactly FQG due to the complex dynamics of NATL60. Therefore, from a
completely random filter, QG-Net found F which is close to FQG, a proof perhaps that the capacity
of this type of models is reached and that the PV is best advected by the GV, as QG-theory claims.

Supplementing known physics with nonlinear learnable components In this experiment, we
consider the same 1-day SSH forecast experiment but we assume that at each time step the PV is
advected by the GV plus NN a nonlinear transformation of SSH (Fig1(c)). NN is a 2-layer ConvNet
with 16 {3× 3} filters, Batch Normalization and leaky ReLU activations, the output layer is a linear
layer with 2 channels that are added to Ug and V g respectively to form W the new velocity fields.
QG-Net has 2545 trainable parameters and we split our data into 122 SSH images of size 200× 150
(1 SSH map each 3 days from 14 Jun 2012 to 13 Jun 2013), then after a 10-day gap we take 32
snapshots as our test dataset (1 SSH map each 3 days from 24 Jun to 29 Sep 2013). Our network
is trained using Adam optimizer with an initial learning rate of 1e−3 which is later multiplied by
0.1 each 100 epoch. Batch size is 4 samples distributed on the 4 GPUs cards. The loss function
considered here is the scaled mean square error used in Eq.5. To ensure a stable gradient flow at
the beginning of the optimization a scalar parameter initialized as zero is multiplied to the ConvNet
velocities.

At the end of training, we unplug the ConvNet from QG-Net, resulting in a NN component that takes
SSH as input and yields a deterministic "perturbation" of GV. A clear benefit from this setup is that

4



the trained component can be plugged back in the original Python code and avoid computational load
at test time. Fig2(b) presents the RMSE distributions of the standard QG, our QG-Net and a naive
constant model (persistance). Adding the ConvNet component to the GV has slightly improved the
standard QG model, this is an indication that a nonlinear velocity term can model SSH dynamics
beyond the standard QG. Fig2(a) shows an example of the additional velocities produced by the
ConvNet along with GV for the same SSH input. We observe that the output of the ConvNet has a
significant amplitude along SSH contours (ocean fronts), and that the fields follow a special pattern
that depends on GV and are not completely random. Interpreting the ConvNet in this experiment is
not straightforward and calls for more investigation to convert it into tangible equations that could be
inspected by physical oceanographers.

4 Conclusion

We show that combining deep learning automatic differentiation libraries and numerical models
could help designing hybrid models with trainable parameters and represent a test bed to evaluate
established physical theories or seek intuition for developing new ones. We believe that this work
represents a modest step for helping physicists developing innovative physical models.

Acknowledgments

The authors would like to thank Clément Ubelmann from CLS for the 1-layer QG Python code
that can be found here https://github.com/redouanelg/qgsw-DI. Most of the computa-
tions presented in this paper were performed using the GRICAD infrastructure (https://gricad.
univ-grenoble-alpes.fr), which is partly supported by the Equip@Meso project (reference
ANR-10-EQPX-29-01) of the programme Investissements d’Avenir supervised by the Agence Na-
tionale pour la Recherche.
R. Lguensat is funded through a postdoctoral grant from Centre National d’Etudes Spatiales (CNES),
he also acknowledges the support of NVIDIA Corporation under the NVIDIA GPU Grant program. S.
Metref is funded by ANR through contract number ANR-17- CE01-0009-01. R. Fablet was supported
by Labex Cominlabs (grant SEACS), CNES (grant OSTST-MANATEE) and ANR (EUR Isblue and
Melody).

References
[1] Tailin Wu and Max Tegmark. Toward an AI physicist for unsupervised learning. arXiv preprint

arXiv:1810.10525, 2018.

[2] Raban Iten, Tony Metger, Henrik Wilming, Lídia Del Rio, and Renato Renner. Discovering physical
concepts with neural networks. arXiv preprint arXiv:1807.10300, 2018.

[3] Sam Greydanus, Misko Dzamba, and Jason Yosinski. Hamiltonian neural networks. arXiv preprint
arXiv:1906.01563, 2019.

[4] Ce Wang, Hui Zhai, and Yi-Zhuang You. Emergent schrödinger equation in an introspective machine
learning architecture. Science Bulletin, 2019.

[5] Giuseppe Carleo, Ignacio Cirac, Kyle Cranmer, Laurent Daudet, Maria Schuld, Naftali Tishby, Leslie
Vogt-Maranto, and Lenka Zdeborová. Machine learning and the physical sciences. arXiv preprint
arXiv:1903.10563, 2019.

[6] Steven L Brunton, Joshua L Proctor, and J Nathan Kutz. Discovering governing equations from data by
sparse identification of nonlinear dynamical systems. Proceedings of the National Academy of Sciences,
113(15):3932–3937, 2016.

[7] Maziar Raissi. Deep hidden physics models: Deep learning of nonlinear partial differential equations. The
Journal of Machine Learning Research, 19(1):932–955, 2018.

[8] Zichao Long, Yiping Lu, and Bin Dong. Pde-net 2.0: Learning pdes from data with a numeric-symbolic
hybrid deep network. Journal of Computational Physics, page 108925, 2019.

[9] Peter Y Lu, Samuel Kim, and Marin Soljačić. Extracting interpretable physical parameters from spatiotem-
poral systems using unsupervised learning. arXiv preprint arXiv:1907.06011, 2019.

5

https://github.com/redouanelg/qgsw-DI
https://gricad.univ-grenoble-alpes.fr
https://gricad.univ-grenoble-alpes.fr


[10] Emmanuel de Bezenac, Arthur Pajot, and Patrick Gallinari. Deep learning for physical processes: Incorpo-
rating prior scientific knowledge. arXiv preprint arXiv:1711.07970, 2017.

[11] Ibrahim Ayed, Emmanuel de Bézenac, Arthur Pajot, Julien Brajard, and Patrick Gallinari. Learning
dynamical systems from partial observations. arXiv preprint arXiv:1902.11136, 2019.

[12] Said Ouala, Duong Nguyen, Lucas Drumetz, Bertrand Chapron, Ananda Pascual, Fabrice Collard, Lucile
Gaultier, and Ronan Fablet. Learning latent dynamics for partially-observed chaotic systems. arXiv
preprint arXiv:1907.02452, 2019.

[13] Clement Ubelmann, Patrice Klein, and Lee-Lueng Fu. Dynamic interpolation of sea surface height and
potential applications for future high-resolution altimetry mapping. Journal of Atmospheric and Oceanic
Technology, 32(1):177–184, 2015.

[14] Uwe Naumann, Jean Utke, Carl Wunsch, Chris Hill, P Heimbach, Mike Fagan, Nathan Tallent, and
Michelle Strout. Adjoint code by source transformation with openad/f. In Proceedings of the European
Conference on Computational Fluid Dynamics (ECCOMAS CFD 2006). TU Delft, 2006.

[15] Jean Utke, Uwe Naumann, Mike Fagan, Nathan Tallent, Michelle Strout, Patrick Heimbach, Chris Hill,
and Carl Wunsch. Openad/f: A modular open-source tool for automatic differentiation of fortran codes.
ACM Transactions on Mathematical Software (TOMS), 34(4):18, 2008.

[16] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito, Zeming
Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in pytorch. In NIPS-W,
2017.

[17] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow: A system for large-scale machine
learning. In 12th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 16),
pages 265–283, 2016.

[18] Atilim Gunes Baydin, Barak A Pearlmutter, Alexey Andreyevich Radul, and Jeffrey Mark Siskind.
Automatic differentiation in machine learning: a survey. Journal of machine learning research, 18(153),
2018.

[19] E Weinan. A proposal on machine learning via dynamical systems. Communications in Mathematics and
Statistics, 5(1):1–11, 2017.

[20] François Rousseau, Lucas Drumetz, and Ronan Fablet. Residual networks as flows of diffeomorphisms.
Journal of Mathematical Imaging and Vision, pages 1–11, 2019.

[21] G. K. Vallis. Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press, Cambridge, U.K.,
2006.

[22] K Shafer Smith and Geoffrey K Vallis. The scales and equilibration of midocean eddies: Freely evolving
flow. Journal of Physical Oceanography, 31(2):554–571, 2001.

[23] BL Hua and DB Haidvogel. Numerical simulations of the vertical structure of quasi-geostrophic turbulence.
Journal of the atmospheric sciences, 43(23):2923–2936, 1986.

[24] Lee-Lueng Fu and Glenn R Flierl. Nonlinear energy and enstrophy transfers in a realistically stratified
ocean. Dynamics of Atmospheres and Oceans, 4(4):219–246, 1980.

[25] Jonathan Richard Shewchuk et al. An introduction to the conjugate gradient method without the agonizing
pain, 1994.

[26] Jean-Marc Molines. meom-configurations/NATL60-CJM165: NATL60 code used for CJM165 experiment,
March 2018.

6


	Introduction
	Model
	Experiments
	Conclusion

