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Abstract

We propose a novel method based on Generative Adversarial Networks (GAN) and
optimization-based inference to learn deep features for observational cosmology.
Measuring the universe’s properties often involve distances and redshifts, which
are very costly measurements. This scarcity has lead to machine learning pipelines
relying mostly on handcrafted features. In this work, we propose an alternative
that takes advantage of the vast amount of unlabeled data that is already available.
Specifically, we learn a latent space of galaxies through a GAN for sharp image
reconstruction, which we further constrain with a latent space reconstruction. We
demonstrate qualitatively that our method successfully learns to recreate astronom-
ical sources. We further show quantitatively that the deep features learned through
our method are able to deliver promising results in estimating redshifts from galaxy
multi-channel images.

1 Introduction

Physical models of cosmology imply tight relations between the geometry and kinematics of the
universe, often quantified from the measure of distances and redshifts using wide field imaging and
spectroscopy survey telescope data. Given the difficulty of measuring extragalactic distances, only
a tiny fraction of the billions of detected astronomical sources in recent public surveys such as the
Sloan Digital Sky Survey [3] or the Dark Energy Survey [1]. We can attain ≈6% precision using
very scarce type Ia supernova events to estimate distances, but even after 20 years since their use
to reveal we live in an accelerating universe, we barely have 1,000 reliable distances [22]. Precise
measurements of redshifts are more numerous but still constitute only a tiny fraction of the available
imaged galaxies, and often handcrafted features are used to measure the rest of the data with a
trade-off on precision [20], and at higher redshifts, physical based models often perform best.

Very recently, attempts were made to change this situation [7, 17] with Convolutional Neural Networks
(CNNs) showing promising results, the scope of the problem was limited to nearby (z < 0.8) sources,
which allows for a larger amount of labeled data (100k) and a fully supervised approach.

In this work, we explore whether one could learn data-driven features for galaxies without much
restriction, and apply them to understand galaxies with few labeled samples – e.g. redshift for galaxies
that are distant (z > 2). To do so, we propose a method based on Generative Adversarial Networks
(GAN) [11] and learn an embedding space that could be used as deep features. While other groups
have extended GANs e.g. [18, 10] to galaxy image generation to calibrate cosmological surveys,
efforts are under way to explore how to infer physical properties from the generative models. Here we
focus how we could reach larger range of redshifts by integrating very deep multi-survey data sets.

In more detail, we train a modified Least Squares GAN (LSGAN) [14] to learn an embedding space
of galaxies from unlabeled galaxy images available from the Hyper Suprime Camera Data Release
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DR2 [2]. To extract deep features using this learned embedding space, we train a network that learns
to re-embed generated images to the original representation similar to [9, 4]. However, unlike [9, 4],
we simply train the embedder to reproduce the original noise signal that was used to create a synthetic
image, instead of trying to embed real galaxy images. By doing so, we learn a fully unsupervised
deep feature representation for the observed astronomical field.

The novelty of our method lies in the inference stage when we extract deep features. We optimize to
infer the latent embeddings for a given input image. In more details, with the initial embedding given
by the embedder, we iteratively update the latent space embeddings to find one that minimize the
reconstruction error the given image. As we show later in Fig. 1, this allows us to obtain accurate
reconstructions, whereas a simple feed-forward approach with the embedder is not able to do so.

We further empirically show that our deep features can be used to regress the redshifts for distant
galaxies. With our deep features, we use the TPOT package [16], which automatically derives a
regression pipeline based on Gradient Boosting [5]. This provides comparable results to the state of
the art [21]. Given that our deep features are never explicitly related to any physical characteristics
of the astronomical sources during training, this demonstrates the potential in learning the hidden
physical properties of galaxies by simply observing much data.

2 Proposed Method

Our network is composed of a typical GAN framework, with an additional embedder that tries to
recover the embedding space from the generated fake image. We first discuss our network architecture,
then the training objective, and finally our novel method that utilizes the trained generator and the
embedder to retrieve the deep features.

2.1 Architectures

Our design choice are empirically motivated from our attempts to form a stable GAN framework.

Generator. We draw a 64D space z from a normal distribution, which is then fed to a fully connected
layer with 4098 output neurons. We then transform the output into a 2× 2 image with 1024 channels.
We further apply 3 residual blocks [12] to expand this image into a 16× 16 image with 128 channels,
where each residual block is composed of a transposed convolution with a stride of two for up-
sampling followed by ReLU activation. The pass-through route is composed of a simple transposed
convolution with no activation. The number of channels is halved at each upsampling. We found
empirically that it was beneficial to not employ any normalization to the generator. We finally apply a
simple convolution with no activation to turn the image into a 32× 32 image with 5 channels, which
is what our observed data looks like.

Discriminator and Embedder. We apply an architecture that mirrors the generator – convolutional
layers in place of transposed convolutions and in reverse order as the generator – but with LeakyReLU
activations. For all layers we apply Spectral Normalization [15]. In addition, we apply Group Nor-
malization [24] for each convolution layer with four groups. The difference between the discriminator
and the embedder is in the fully-connected layer, which the embedder has 64 output neurons and the
discriminator has one output neuron, respectively.

2.2 Training

To form a GAN framework and learn an embedding space, we apply the LSGAN objective1 but with
an additional objective to train the embedder. The additional objective that we apply is to reconstruct
the embeddings with an embedder. If we denote the latent space embedding as z, the generator with
parameters Φ as GΦ, and the embedder as EΘ, where Θ is the parameters of this embedder, we
define an additional loss term LE for training as

LE = Ez∼N

[
‖z− EΘ (GΦ (z))‖22

]
, (1)

whereN is a normal distribution. Note that in [8], the embedder was trained to operate on real images,
and create a pair of latent embedding and image, which was then distinguished by a discriminator.

1Because of spatial constraints, we omit this objective and refer the interested readers to [14].
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Figure 1: Qualitative examples. All five channels are shown as columns for the two galaxy images.
(First row) actual observations, (second row) reconstructions using only the embedder, (third row)
reconstructions using only the optimization starting from a random embedding, (fourth row) our
method. Our method is able to provide accurate reconstructions. As shown, optimization alone fails
in both cases and the embedder alone fails for the left example.

This creates difficulty in training, as different data types are fed to the discriminator, and the user
further needs to balance between the embedding and the image for training the discriminator. Our
approach alleviates this complexity and keeps things simple. This further allows us to even train the
embedder separately if needed.

However, as shown in Fig. 1, an embedder trained in this way is not able to deliver good embeddings,
which is why we opt for a unique inference flow that we detail in the next subsection.

2.3 Inference

The uniqueness of our method lies in the inference phase. Our method starts from the intuition that
our ultimate goal with the embedder is to be able to find the latent space that best reconstructs a
given image example. Therefore, instead of aiming to train a perfect embedder that may not be
possible, starting from the initial estimate provided by the embedder, we explicitly minimize this
reconstruction error, with respect to the latent embeddings. Mathematically, if we denote the image
we wish to obtain the latent embeddings for as I, we obtain our latent embedding ẑ as

ẑ = argmin
z
‖I−GΘ (z)‖22 . (2)

To solve this equation and retrieve ẑ, we use the Adam optimizer [13] with a learning rate of 0.25.

Notice that there is no embedder in Eq. (2). This does not imply that an embedder is unnecessary.
Rather, the optimization problem defined in Eq. (2) is highly non-convex, while the optimization we
perform is based on gradient descent. It is therefore important that the embedder provides a proper
initial guess to the location; see Fig. 1. Still, this requirement is not as strict as the alternative where
one aims to learn a perfect embedder.

3 Results

3.1 Data preparation

Our data sets consist of very deep extragalactic fields observed in multiple filters u,g,r,i,z, with the
Subaru and the Canada France Hawaii Telescopes. Hundreds of exposures we registered and stacked
for each filter [19, 21] to produce higher larger signal to noise images, and from the catalogue of
detected sources on the stacked images, we extract 200k 32× 32 cutouts centered on a source, which
happens to be most of the time a resolved galaxy but on rarer occasion a star or quasar. We do not
apply any selection criterion on the nature, luminosity or shape of the sources.

For training our modified LSGAN, images with missing or corrupted information are discarded, and
the remaining data is normalized, per channel, by the average mean and standard deviation of all
input galaxy field images.
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Figure 2: Example of impainting the u-channel. The u-channel of the observation (left) for some
reason has been destroyed in the dataset. Even so, our method is able to impaint the u-channel (right)
by finding the latent embedding that best reconstructs the other channels without any re-training.

3.2 Reconstructing field images

We provide qualitative examples for reconstructing field images in Fig. 1. Comparing results
with and without the embedder reveals the importance of a good-enough initial guess, empirically
demonstrating that the solution space for Eq. (2) is indeed non-convex. The poor results without the
embedding optimization show that an embedder alone is unable to provide an informative embedding.

Besides simple reconstructions, we provide another example in Fig. 2, which demonstrates the
potential of the proposed method. In Fig. 2, we show that without any re-traning our method is able
to find the latent embedding that best fits the other four channels, recreating the u-channel image in
doing so. This highlights the potential of our method being able to adapt to situations where only
partial measurements are given.

3.3 Predicting galaxy redshifts from field images

Table 1: Quantitative results. We show the best method
in bold and underline the second best. See text for details.

Method R2 < z > σMAD η

Wide ResNet [25] 0.0110 -0.0277 0.253 0.0
Sawicki et al. [21] 0.608 0.00921 0.0589 0.450

Our Method 0.633 -0.0235 0.130 0.389

To demonstrate the usefulness of our
deep features, we use an off-the-shelf
automatic regressor [16] with our deep
features. The redshifts measured
through spectroscopic measurements
are taken as the ground-truth labels from
the COSMOS [23] and CLAUDS [21]
surveys. We evaluate the quality of pre-
dictions quantitatively with four stan-
dard metrics for cosmology: R2; Bias, or 〈∆z 〉, which is a average of ∆z following the definition
by [6]; Mean Absolute Deviation, σMAD; fraction η of outliers, with outliers defined as having
|∆z | > 5σMAD as in [21]. We compare our method against a state-of-the-art method by Saw-
icki et al. [21]2, and a CNN regressor using the 50 layer architecture proposed in [25], using the
same field images as input. Table 1 summarizes these results. Our method provides outperforms
Sawicki et al. [21] in terms of R2 and η, but performs worse in terms of 〈∆z 〉 and σMAD. Note that
using a wide ResNet completely fails as shown by the R2 and σMAD – this also makes the η value
invalid as none of samples are considered outliers. While there is room for improvement, given that
our deep features were trained fully unsupervised, it demonstrates the potential of our deep features.

4 Conclusions and Future Work

We have proposed a method based on GANs and best-fits to learn deep features for cosmology form
field images. We demonstrated that the proposed method is able to obtain embeddings that could be
used to reconstruct field images with deep networks. We further showed an early demonstration of
using our deep feature to regress redshifts.

While we have only demonstrated it for redshift of galaxies, we expect our deep features to carry
much more than just redshifts, such as distances or image features with physical interest. While
the derived deep features are fully unsupervised and data driven, we plan to further incorporate
semi-supervised approaches to enhance these deep features even further.
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