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Abstract

We present a new method to perform 2D measurements based on planning point-
wise measurements. This can replace the raster scan for many scientific experiments.
The proposed method is based on a deep generative model to generate multiple
possible reconstructions given an arbitrary number of scattered measurements, and
information theory is used to choose the optimal next location for the point-wise
measurement. The proposed method is not domain-specific and could be used for
any type of 2D measurement as long as training data is available.

1 Introduction

In this paper, we are interested in scientific experiments, where only point-wise measurement is
available at a time, such as measurements of electric current through a solid-state device. It is often
required to gather a 2D measurement map to extract useful information for scientific analysis. The
most conventional way of measuring a 2D map using point-wise measurements is a raster scan. This
paper proposes an alternative way of completing a 2D map in a more efficient way than the raster scan.
The overall framework of the proposed method is i) predicting multiple full resolution measurements,
called reconstructions in this paper, based on already collected data and ii) determining where the
most informative location is for a new measurement. Especially, we focus on problems, for which
there is a set of expected patterns that is used as a training set. In our experiment, we measure electric
current through a quantum dot device over a certain range of bias and gate voltages, where we expect
a pattern called Coulomb diamonds. It is important to measure the regions where signal changes like
at the edges of the diamonds, because the change of signal contains most of the information. We show
that this can be achieved by reducing the uncertainty of reconstructions. As we have many actual
measurements and simulation examples, a deep generative model can be trained. It is important to
generate multiple possible full-resolution reconstructions as the multiple possibility is the source of
the optimal decision to reduce the uncertainty.

The proposed method is closely related with active learning [1], and design of experiments [2],
of which objective is to reduce the uncertainty of a predictor. The most common approach on
sequential design of experiments for global optimisation or uncertainty reduction is based on Gaussian
process [3, 4, 5, 6, 7, 8]. Given existing observations, a Gaussian process model generates a posterior
distribution for any unseen location, and the next observation location is chosen by optimising a
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selection criterion. The biggest difference of the proposed method is replacing a Gaussian process
regression model with a deep generative model and approximating the selection criterion with random
samples of the model. When a training set is available, a deep generative model has several advantages.
Firstly, the prediction of a deep generative model is not necessarily Gaussian, or uni-modal. Secondly,
it is faster to generate a random sample of full-resolution reconstruction. Note that the aim of this
paper is to introduce a recent paper [9], emphasizing the contribution and novelty in terms of machine
learning.

2 Mathematical objective

2D scan based on a point-wise measurement is a popular method in scientific measurement to charac-
terise underlying physical quantities. In our experiments on quantum-dot devices, a measurement
output is electric current in amperes given bias and gate voltages. A 2D current map across the bias
and gate voltages, called a stability diagram, contains physical information about a quantum dot [10].
The device of interest in this paper is a single-dot device, hence we expect to see a pattern called
Coulomb diamonds, which is a sequence of aligned diamonds as in Figure 1. The stability diagrams
basically consist of edges and flat regions, and the edges contains almost all physical information.
Therefore, it is beneficial to scan edges first than flat regions.

This paper focuses on planning a measurement sequence to estimate the entire 2D map with least
measurements, which is essentially the same objective with active learning and design of experiments
for uncertainty reduction. This objective is not only more general, but also very closely related with
the problem of measuring edges first, because flat regions are easily predictable, and most uncertainty
is on the edges.

Let Y be a set containing all pixel values in full-resolution, and Yn be a set of n pairs of location xj
and point measurement yj : Yn = {(xj , yj) | j = 1 ∼ n}. The likelihood is defined as

p(Yn | Y ) ∝ exp
(
−λΣ(x,y)∈Yn

|y − Y (x)|
)
, (1)

where Y (x) is the pixel value of Y at x, and λ is a sensitivity parameter. The objective of the
algorithm is to choose the next measurement location xn+1 to minimise the uncertainty of Y or
equivalently the entropy H(Y |Yn, yn+1). Throughout this paper, we simply write yn+1 instead of
(xn+1, yn+1) for the condition of random variables and distributions for brevity.

The dimensionality of Y is the number of pixels, but the effective dimensionality is much smaller,
because most combinations of pixel values are extremely unlikely. Therefore, we use an embedding
vector z, which is trained by a Variational Auto-Encoder (VAE), so that z can be decoded to Y (z),
and Y can be encoded to z(Y ). The objective in the embedding space is to minimise H(z|Yn, yn+1)
by choosing the location of xn+1. It is well kown that minimising the entropy is equivalent to

• maximising the mutual information: argmaxxn+1
I(z|Yn; yn+1|Yn, xn+1).

• maximising the expected KL divergence: argmaxxn+1
Eyn+1

[
KL
(
pn(z | yn+1)‖pn(z)

)]
,

where pn(·) = p(·|Yn).

Detailed derivations can be found in [9].

3 Approximation

The expected KL divergence requires two integrals:

Eyn+1

[
KL
(
pn(z | yn+1)‖pn(z)

)]
=

∫
yn+1

pn(yn+1)

∫
z

pn(z | yn+1) log
pn(z | yn+1)

pn(z)
dzdyn+1.

(2)
Since this integral has no closed form expression, we propose an approximation using importance
sampling [11]. Let ns < n denote the number of measurements that are used for sampling re-
constructions ẑ1, . . . , ẑM , and define weights and normalised weights as wi = pn(ẑi)/pns(ẑi),
w′i = pn(ẑi|yn+1)/pns

(ẑi), w̃i = wi/
∑M

j=1 wj , and w̃′i = wi/
∑M

i=j w
′
j . The normalised weights
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Algorithm 1: Algorithm for the efficient measurement
Input: Batch schedule Nb, the number of samples for the approximation M
Output: The measurement Yn
Measure 8×8 initial scan Y64;
n← 64 ;
repeat

Generate samples ẑ1, . . . , ẑM using a MCMC sampler ;
Calculate the information gain map using the approximated criterion (3) ;
nnext ← min{n′ ∈ Nbatch|n′ > n} ;
nbatch ← nnext − n;
The next batch← a set of nbatch best locations in the information gain map ;
Measure the batch ;
n← nnext

until Stopping criterion satisfied;

can be interpreted as probabilities, Pn(i) = w̃i and Pn+1(i) = w̃′i, because they are non-negative
and sum to one. The inner integral in (2) can be approximated with the probabilities:

Eyn+1

[
KL
(
pn(z | yn+1)‖pn(z)

)]
≈
∫
yn+1

pn(yn+1)KL(Pn+1‖Pn)dyn+1 + C,

where C is a constant. The posterior sample from pn(yn+1) can be drawn by i) generating samples
ẑi (i = 1 ∼ M ) from pn(z); ii) decoding the samples to reconstructions Yẑi

; ii) adding a noise
value at the location: Yẑi

(xn+1) + ε. The outer integration of (2) can be approximated by the same
importance sampling method with setting ε = 0 for the sake of fast computation, which yields:

Eyn+1

[
KL
(
pn(z | yn+1)‖pn(z)

)]
≈

M∑
i=1

Pn(i)KL(Pn+1‖Pn) + C. (3)

By using this approximation, M samples of z at time ns can be used to approximate (2) for any
n ≥ ns for all possible locations xn+1. Note that Pn(i) = 1/M if n = ns, which means each sample
is a perfect sample at time n. The approximation becomes worse if n is too different from ns, as
the estimator variance cause by the weights becomes larger, i.e., the effective sample size becomes
lower [12].

It can be easily verified that the approximation (3) only depends on (xns+1, yns+1) ∼ (xn, yn),
ẑ1 ∼ ẑM , and xn+1. We call (3) the information gain, and the 2D map of information gain for
each possible xn+1 is called the information gain map. The optimal xn+1 is the location having the
maximum value on the map. From our experiments, it takes approximately 50 ms to calculate an
entire information gain map with NVIDIA GTX 1080 TI when the full resolution is 128×128 and
M = 100.

4 Embedding

To create the embedding space, we use a VAE with some modifications. Basically, the VAE encodes
images of resolution 128×128 to 100-dimensional z vectors and decode them to reconstructions, of
which resolution is again 128×128. Let Y t and Ŷ denote an training example and a reconstruction,
respectively. The reconstruction loss of a plain VAE is the negative log-likelihood (NLL) of p(Y t|Ŷ )
as in (1). Because the reconstructions of the plain VAE is blurry, we use a contextual loss using a
discriminator network that distinguishes whether an image is from training data or generated data.
For a set of some selected layers of the discriminator network, denoted by K, the contextual loss
is l =

∑
k∈{0}∪K akn

−1
k 1 · |hk(Y t) − hk(Ŷ )|, where hk(·) is the vectorised output of kth layer

given a corresponding input, k = 0 indicates the input layer, nk is the number of elements of the kth
layer output, ak is a weight for each layer, and 1 is a one-vector with an appropriate length. The
layer weight ak is periodically adjusted during training to make the effect of each layer same. The
contextual loss is same with the NLL, if K = ∅. For better reconstruction result, 8×8 low-resolution
images are additionally fed to the decoder, which is called conditional VAE (CVAE) [13]. We found
that the additional information helps to improve global consistency of the reconstructions.
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Figure 1: a, c) The batch algorithm with raw reconstructions. b, d) The pixel-wise algorithm with
segmented maps of reconstructions.

5 Decision

After training the CVAE, Algorithm 1 can be used for the efficient measurement2. For the experiments,
we use a Matropolis-Hastings sampler [14] with a Gaussian kernel for sampling ẑ1, . . . , ẑM . In terms
of efficiency per pixel-count, choosing the single best location after each pixel observation is the best.
However, changing the location to measure is expensive, because ramping voltages takes a long time.
Therefore, we propose a batch selection method, which selects nbatch pixels at a time, not a single
pixel. Then the path for the batch is optimised. We set Nb = {2i|i = 7, . . . , 14} for the experiments.

6 Result

Figure 1a shows the collected measurements for some selected n with the batch method. Black,
red, blue, and white color in the images means no data, high current, low current, zero current,
respectively. Figure 1c is the graph of proportional unmeasured gradient r(n) = 1 − v(n)/v(N),
where N = 16, 384, vx is the gradient magnitude at x on the full measurement YN , and v(n) =∑n

i=1 vxi
. The optimal line in Figure 1c is the theoretical optimum that no algorithm can exceed,

computed by choosing the highest vx with knowing the full measurement YN . The shaded region is a
credible interval of real-time estimation of r(n). The black line in Figure 1c is the performance of a
multi-resolution grid method, which doubles the resolution of the scan on the given window, which
results in low discrepancy points. In this paper, the performance of a Gaussian process regression
based model is not compared, but the performance will be close to the black line, when integrated-
mean-squared-error (IMSE) [2] is used as a selection criterion to reduce the uncertainty of a predictor,
as it tends to spread points evenly. Details about time for computations and experiments, stopping
criterion, and more examples can be found in [9].

Since the most important feature is the boundary between zero current regions and current-flowing
regions, we developed a segmentation method that converts Ŷ to a segmented map f(Ŷ ) and applied
the same criterion (3) to the segmented maps f(Ŷ1), . . . , f(ŶM ). Figure 1b shows the measurement
sequence, and the panel d shows the quantitative performance by setting v′x the gradient magnitude at
x on f(ŶN ). We can see that the algorithm prioritise the boundary of interest.

2Code and an example available at https://github.com/returnddd/CVAE_for_QE
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7 Conclusion

In this paper, we showed that information theoretic decision-making is useful for planning point-
wise measurements with posterior samples of a deep generative model. It can be used to focus on
where signals change, or more contextual information by transforming reconstructions to labels or
quantities of interest. The limitation of this research is the availability of a training dataset. For some
scientific experiments, a simple simulator is available, but the real-world measurement is far more
complicated, which makes it impossible to use the simulator outcome as a training set. Transfer
learning, domain adaptation, and style-transfer are promising candidates to connect the real world
and a simple simulator.
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