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Abstract

Data-driven chemical synthesis is expected to accelerate the discovery and devel-
opment of new molecules and materials. One of the main strategies to do chemical
synthesis design is retrosynthesis. A retrosynthetic step involves the break down of
the target molecule into available starting materials by imaginary disconnection of
bonds or by functional group interconversion, which leads, upon iteration, to a tree
of possible synthesis pathways. Multiple data-driven retrosynthetic models have
been proposed in the last years to help chemists construct optimal routes. However,
their performance is typically evaluated with a top-N accuracy metric, which is the
probability of finding the ground truth output within the first N recommendation of
the predictive model. In this work, we analyze the drawback of using a top-N accu-
racy and propose an analysis over three of the four evaluation metrics introduced
in a recent publication of ours: round-trip accuracy, coverage and diversity. We
show that it is possible to train a transformer-based retrosynthetic model, reaching
a round-trip accuracy of 82.4%, while covering 96.4% of the reactions.

1 Introduction

The synthesis of novel materials and molecules, for example, new medicinal drugs, agrochemicals
and polymers, has a tremendous impact on modern society. Recently, the search for strategies to
accelerate the discovery of new molecules led to innovative algorithms for molecular design [1, 2].
However, apart from few exceptions [3, 4, 5], most de-novo molecules were not experimentally
verified due to obstacles in their synthetic routes. Current molecule generation strategies do not
account for the synthesizability of a target molecule. Therefore, computer-based algorithms that
efficiently evaluates the synthesis of a candidate structure and provides a way to penalize the design
of hard-to-synthesize molecules will soon be a key component to bring molecular design closer to
experimental validation.

The dream of automating the design of synthesis has been around for many decades and was first
formulated by Corey[6], who pioneered the concept of retrosynthetic analysis. In retrosynthesis, a
synthetic route is designed starting from the desired product and following a backward analysis. In
every retrosynthetic step, candidate precursors are suggested, which by reacting together would form
the molecules from the preceding step, until (commercially) available precursors are found [7, 8].
For a comprehensive review of computer-aided synthesis, we refer the reader to recent publications
[9, 10].
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A crucial part of a retrosynthetic tool is the algorithm that suggests candidate precursors for each
step, generating a tree of possible reactions, where the ending nodes are (commercially) available
starting materials. Whenever a reacting molecule, which is not commercially available, is suggested,
the tree is further expanded at that molecule. However, one of the intrinsic difficulties is evaluating
and comparing the single-step prediction models. In fact, various single-step retrosynthetic models
have been proposed in the last two years by prioritizing automatically extracted reaction rules [11, 7],
traditional seq2seq [12], molecular similarity [13], transformer-based models [14, 15, 16, 17, 18, 19]
and a graph-2-graph and graph-2-seq two-step method [20]. To simplify the prediction task, authors
removed reagents (molecules not contributing atoms to the products) from the reactants using rule-
based reaction-reagent role assignment [21, 22] and evaluated their models using a top-N accuracy.
Top-N accuracy means that the exact precursors (matching the same entry as the one reported in the
data set) are found within the N most likely predictions of the model.

Unfortunately, chemical reactivity is not a one-to-one function but rather as a many-to-one, in which
multiple sets of precursors can react to produce a given product. What makes one of them more
preferable than the other are things such as yields, ease of execution and price. An example is shown
in Figure 1. This means that any top-N accuracy reported in previous literature is simply an evaluation
of how good the model is in retrieving precisely the same information that was stored in the evaluation
data set. To make things worse, the reactions reported in this set very likely are not the optimal ones.
Consequently, evaluating single-step retrosynthetic models by comparing the top-N accuracy is only
a metric of how good the model is performing on information retrieval tasks and not of the quality of
its predictions.

SNAr ether synthesis (1.7.11)
US05922742A

Bromination (10.1.1)
US20120088764A1

O-methylation (1.7.14)
US20150210671A1

desired product
5-Bromo-

2-methoxypyridine

SNAr ether synthesis (1.7.11)
US20020137770A1

Figure 1: Highlighting few of the ground truth precursors and reactions to form 5-Bromo-2-
methoxypyridine.

Therefore, we should focus on evaluating if the model predictions are valid combinations that could
react to give the specified product without pretending to retrieve the exact entry of the validation set.
Recently we disclosed a novel end-to-end retrosynthetic framework [23], where we introduce four
different metrics to optimize single-step retrosynthetic models. Here, we discuss more in detail three
of the four metrics based on a model-score, namely, round-trip accuracy, coverage and diversity. We
dispute the previous use of top-N accuracy and initiate a discussion about new ways of evaluating
and improving retrosynthetic models. A more elaborate analysis on the complete set of metrics for
single-step retrosynthetic models within multi-step pathway predictions, is available in a recent work
of ours [23].

2 Evaluation Metrics for Single-Step Retrosynthesis Models

An incontrovertible evaluation of a model prediction involves an assessment by human experts
followed by validation with wet-lab experiments. Such an evaluation is unfortunately not scalable,
and while it can be done in a few cases, it demands effort and investments. The closest approach to
the use of human experts is the use of a forward chemical reaction prediction model to validate the
suggestions of the retrosynthetic models [24, 7]. In fact, given a set of reactants/reagents, a forward
prediction model predicts the corresponding product and by-products (possibly due to selectivity
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issues). Model scores, as an alternative to human annotators, have been already used to evaluate
generative adversarial networks [25].

desired product

comparing with
experimental 
products

comparing with ground 
truth precursors

retro accuracy
previous work

this work
ideal, but not scalable 

fast, but sub-optimal
many sets of precursors lead to same product 

scalable single-step retrosynthesis
evaluation metrics

candidate precursors 1
candidate precursors 2
…
candidate precursors N

candidate precursors 1
candidate precursors 2
…
candidate precursors N

Human expert
validation Experiments

Model to evaluate

Fixed scoring model

predicted product 1
predicted product 2
…
predicted product N

Retro
Model

Forward
Model

round-trip accuracy
% of predicted product == desired product

coverage
at least 1 predicted product == desired product 

diversity
diverse valid  precursors per desired product

average likelihood
likelihood of reactions given forward model

Figure 2: Overview of single-step retrosynthesis evaluation metrics.

Here we analyze three of four metrics recently introduced [23] to evaluate retrosynthetic models
based on the use of a chemical reaction prediction model (forward model) and report an overview in
Figure 2. First, the round-trip accuracy quantifies what percentage of the retrosynthetic suggestions
are valid. It is desirable to have as many valid suggestions as possible. Letting a retrosynthetic model
make more suggestions, for example, using a beam search, might lead to a smaller percentage of
valid suggestion, as the suggestion quality decreases in the higher beams.

Second, the coverage quantifies for how many of the products at least one valid suggestion of the
set of reactants could be found. A model could make many valid suggestions for some reactions,
but none for the rest. This would result in small coverage. A retrosynthetic model should be able to
produce valid suggestions for various products.

Third, the diversity counts the number of diverse valid precursors after removing the available
(buyable) molecules. It is desirable for a single-step retrosynthesis model to predict structurally
different precursors and not just reactant sets with, for example, just a different solvent. Similar to a
skilled chemist, a model that is predicting precursors with a high diversity will have a better chance to
circumvent failing reactions in a synthesis route. Another way to assess the diversity of the suggested
reactions is to use a reaction classifier and count the number of reaction classes [23].

Beyond the three metrics reported here, it is important to measure the bias the model introduces in
suggesting different classes as a consequence of imbalanced training data sets. We cover elsewhere
[23] this important aspect, complementing the diversity metric with a statistical analysis of the
probability distributions across different suggested classes, using a novel reaction class prediction
model [26].

Additionally, it is also important that the model produces syntactically valid molecules. We check
this using the open-source chemoinformatics software RDKit [27].

3 Results & Discussion

We used the metrics suggested above can be applied to any retrosynthesis model. Here, we apply
the metrics to a retrosynthesis model based on the Molecular Transformer [28, 29, 30], trained using
the same method and hyperparameters as described in the Molecular Transformer paper. The main
difference is that compared to the training of the reaction prediction Molecular Transformer, we
trained the retrosynthesis by exchanging source and targets. Similar to previous work [31, 12, 32],
the molecules used as source and target are strings represented with the simplified molecular-input
line-entry system (SMILES) [33], a line notation to describe molecular graphs. e.g. the SMILES for
a benzene ring would be "c1ccccc1". Recent work [14, 15, 16, 17, 18] have also used the transformer
architecture for retrosynthesis but limited themselves to the predictions of reactants and a top-N
evaluation.

Table1 shows the development of the three evaluation metrics during the training of a retrosynthesis
model. For this experiment, we fixed the beam size at 10. A beam search with beam size X allows
obtaining the X most likely precursor sets for a given product. As expected, all three metrics increase
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continuously before converging at around 100k time steps, while the percentage of invalid SMILES
simultaneously decreases.

Table 1: Development of the metrics during training.

Model Beam Total Round-trip Coverage Diversity Invalid
rxns accuracy per rxn SMILES

stereo 10k 10 100k 56.9% 87.4% 1.87 4.03 %
stereo 20k 10 100k 73.8% 93.8% 2.15 1.72 %
stereo 50k 10 100k 78.7% 95.0% 2.29 0.81 %
stereo 100k 10 100k 81.6% 95.8% 2.28 0.65 %
stereo 150k 10 100k 81.3% 95.8% 2.29 0.62 %
stereo 200k 10 100k 81.0% 95.8% 2.32 0.59 %
stereo 250k 10 100k 81.5% 95.9% 2.23 0.58 %

In Table 2, we compare the evaluation metrics for three different beam sizes and models trained on
different amounts of data. The training data sets, differ as follows: stereo contains 1M reactions from
the USPTO dataset [34], stereo&text contains additionally 900K textbook reactions generated by
Nam & Kim [31]. Adding the additional data seems to be beneficial for all the metrics and to decrease
the percentage of invalid SMILES in the suggested precursors. As seen in Table 2, increasing the
beam size leads to a slight decrease in the round-trip accuracy but the number of diverse reactions
and the coverage increases.

Table 2: Evaluation of retrosynthesis models with different training data, evaluated on the same
validation set with different beam sizes.

Model Beam Total Round-trip Coverage Diversity Invalid
accuracy per rxn SMILES

stereo 5 50k 82.4% 93.5% 1.6 0.57 %
stereo&text 5 50k 83.6% 94.2% 1.6 0.52 %

stereo 10 100k 81.5% 95.9% 2.2 0.59 %
stereo&text 10 100k 82.4% 96.4% 2.3 0.49 %

stereo 20 200k 79.8% 97.1% 3.1 0.65 %
stereo&text 20 200k 80.8% 97.5% 3.2 0.87 %

For every reaction in the USPTO data set [34], we checked that all the molecule names were correctly
recognized and could be converted to an InChI [35, 36]. As available molecules for the diversity
score, we have taken a data set from emolecules [37]. The validation set, on which the experiment
was performed, contained 10k unseen reactions from the USPTO dataset. The experiment were run
using the code found on [29].

4 Conclusion

The evaluation of single-step retrosynthetic models is an overlooked research topic. The top-N
accuracy, which is usually reported to rank the predictive quality of such models is far from being
ideal, as it assesses the information retrieval capabilities rather than the quality of the predictions.
Ideally, the optimal assessment would involve human experts. This approach is unfortunately not
feasible if not in a few cases. Here we present the use of a chemical prediction model as a surrogate
of human expertise to discuss three of four recently introduced metrics based on a forward prediction
model: round-trip accuracy, coverage and diversity. The extended analysis, introducing the fourth
metric on the statistical significance of the diversity through the Jensen-Shannon divergence can be
found in [23].

We proposed metrics to evaluate any retrosynthetic single-step model based on a forward predic-
tion transformer architecture [28]. Compared to recent work [14, 15, 16, 17, 18] using a similar
transformer-based retrosynthetic model, we predict not only reactants but also reagents. Despite
the increased difficulty of the task, we showed that it is possible to reach a round-trip accuracy of
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82.4%. This means that for 82.4% of the precursors suggested by the retrosynthesis model, the
forward reaction prediction model predicted the correct product. We hope that this work will initiate
a discussion on how to best develop more robust single-step retrosynthesis models while improving
their prediction rate and help researchers in the field of machine learning and chemical synthesis
design.
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