
Generative Models for Solving Nonlinear
Partial Differential Equations

Ameya Joshi∗† Viraj Shah∗† Sambuddha Ghosal‡ Balaji Pokuri‡
Iowa State University

{viraj, ameya, sghosal, balajip}@iastate.edu

Soumik Sarkar ‡ Baskar Ganapathysubramanian ‡ Chinmay Hegde †
Iowa State University, Ames

{soumiks, baskarg, chinmay}@iastate.edu

Abstract

Partial differential equations (PDEs) describe a wide variety of physical systems.
While there exist several numerical methods to solve PDEs, they are often com-
putationally expensive, and solutions to varying boundary conditions and forcing
functions need to be derived from scratch. We present a conditional generative
modeling based approach to solve families of PDEs parameterized by a distribution
of boundary conditions and coefficients. We validate our approach by solving a
family of nonlinear PDEs: the Burgers’ equation with a single trained model. We
also compare with other neural network based solvers as well as standard numerical
solvers and demonstrate comparable accuracy while being computationally more
efficient.

1 Introduction

Motivation. Complex physical systems are often characterized using partial differential equations
(PDEs). While analytically solving such nonlinear PDEs is generally difficult, there has been great
progress in numerical approaches such as finite-element (FEM), finite-volume (FVM), and finite
difference (FDM) methods [21]. However, for the case of non-linear PDEs, such algorithms require
careful design and domain specific understanding to solve the problem accurately and tractably. In
addition, the numerical approaches are often computationally expensive.

We present an efficient alternative approach wherein we train a conditional generative model, that
we call DiffNet, to solve a family of PDEs parameterized by coefficients and boundary conditions.
While there are several recent works in this domain [15, 25, 14, 3], these approaches often require
data in the form of samples of the solution space. Additionally, these approaches generally provide
pointwise solutions to a specific PDE instance. However, our approach is data-free and does not
require availability of training examples from the solution space.

Contributions. As our primary application, we design DiffNet models to generate solutions for
partial differential equations parameterized by boundary conditions and coefficients. We show that
DiffNet provides flexible user control over both boundary conditions and PDE coefficients. As an
example, we solve the classical non-linear time varying Burgers’ Equation [2] in both viscid and
inviscid cases and demonstrate that DiffNet provides very competitive results compared to numerical

∗Equal contribution
†Dept. of Electrical and Computer Engineering
‡Dept. of Mechanical Engineering

Second Workshop on Machine Learning and the Physical Sciences (NeurIPS 2019), Vancouver, Canada.



solvers. This marks a significant improvement over recently proposed unsupervised learning methods
for solving PDEs, such as [25].

Related Work. Data driven approaches for solving PDEs such as [1, 23, 17, 4, 15, 16, 12, 13] use
simulated solutions to learn surrogate solvers. Sirignano et al. [19] rely on analytically calculated
gradients to train a surrogate solver for high dimensional PDEs. Han et al. [8] approximate gradients
of the solution using ideas from reinforcement learning. Raissi et al. [15] demonstrate the use of
a fully connected neural network to generate pointwise solutions to a non-linear PDE using a data
sampled from the solution. Pang et al. [14] and Yang et al. [22] extend this approach to solve
fractional and stochastic PDEs respectively.

Farimani et al. [5] propose a standard conditional GAN to generate solutions to the standard transport
equation for specific initial conditions. Zhu et al. [24, 25] employ the use a convolutional encode-
decoder architectures along with a conditional FLOW [18] model to surrogate a PDE with stochastic
coefficients. Similar to our approach, they rely on the use a physics informed loss to train their
model. However, our approach uses adversarial generative models instead of normalizing flows
and additionally is flexible enough to allow for variation in both initial conditions as well as the
coefficients. Hsieh et al. [9] learn neural network based solvers for linear PDEs and show strong
convergence guarantees. Greenfield et al. [7] and Katrutsa et al. [10] learn multigrid solvers for a
class of PDEs. Li et al. [11] propose a variational network to solve elliptic linear and nonlinear PDEs.

We note that the above listed approaches typically rely on availability of data to learn the PDE
solutions. Conversely, our architecture is data-free in the sense that it does not require solution
instances. Unlike [15], we generate solution fields over the entire domain (geometry) of the PDE
rather than pointwise outputs. For quantitative comparison, we consider the deterministic surrogate
introduced in [25] for solving Burgers’ Equation, where the input to the learning framework are
example input fields that obey certain boundary conditions.

2 Proposed Model: DiffNet

Following the notation in Hsieh et al. [9], we consider a nonlinear PDE defined as

Aν(u) = f, B(u) = b (1)

where u(s) is the solution to the PDE over the domain Ω ∈ Rs, Aν is the non-linear functional form
of the PDE defined by its coefficients ν, and f is a forcing function. Here, B(·) refers to the boundary
conditions for the PDE.

For solving the above PDE numerically, the standard approach is to discretize Ω to (say) a square
grid, S ∈ Ds where D is a discrete subspace of Rs. Subsequently, u can be discretized into a vector,
ū, by approximating via a basis of piecewise-constant functions over each sufficiently small discrete
element. Similarly, the boundary conditions are also discretized over the grid. Following the standard
approach defined by FEM or FDM methods, we can locally approximate A using a linear operator A
over each discrete element. The problem then simplifies to iteratively solving a large set of (local)
linear equations of the form:

A(ū) = 0,

in order to estimate u. Solving each linear system incurs high computational expense but on the other
hand, the forward operator A(ū) is easier to apply.

In order to model the solution space, we propose a generative neural network that we call DiffNet.
DiffNet consists of a generator Gθ : Rk → Rd that takes as input the boundary conditions b and any
PDE coefficients ν. The generator is then trained to generate the solution to the PDE that corresponds
to the input boundary conditions and coefficients. This also models the stochastic case where b and ν
are sampled from distributions themselves.

We observe that for Gθ(·) to successfully represent the solution space of the PDE, generator outputs
must satisfy two conditions: (1) Gθ(·) must satisfy the PDE, and (2) Gθ(.) must respect the provided
input boundary conditions. The training loss can therefore be written in terms of two components:

Lp(θ) = Eb,ν [‖Aν(Gθ(b, ν))− f‖22], Lb(θ) = Eb‖B(Gθ(b, ν))− b‖22] (2)

The first term, Lp, minimizes the residual of the PDE while the second term, Lb, pushes the generator
to learn to reproduce the given boundary conditions. In order to train the above network, we sample a

2



ν = 0.0 ν = 0.0 ν = 0.001 ν = 0.002 ν = 0.05

c = 2.0 c = 4.0 c = 4.5 c = 4.5 c = 4.0

D
iff

N
et

x
→

0.2

0.4

0.6

0.8

0.2

0.4

0.6

0.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

N
um

er
ic

al
m

et
ho

d

x
→

R
es

id
ua

l

x
→

t→ t→ t→ t→ t→

Relative
`2 error

0.073 0.095 0.147 0.117 0.071

Figure 1: Example of solutions to Burger’s Equation generated using DiffNet for a family of boundary
conditions. Row (a) shows solutions generated by DiffNet. Row (b) are actual solutions calculated
by explicit Euler methods. Row (c) represents the residual between the two. Column (1) explicitly
shows that our model generalizes even for an unseen initial condition, c = 2.0.

batch of boundary conditions and coefficients, {bi, νi}, i = {1, 2, · · · , k} and alternately optimize
each loss term with respect to θ using stochastic gradient descent (or a variant such as Adam). Using
minibatches sampled from a distribution of b and ν allows the generator to learn the solutions for the
family of PDEs parameterized over (b, ν).

Implementing the forward model. The derivatives of Lp(θ) with respect to θ require calculating
∂Aν

∂θ . This is generally non-trivial and to make this tractable we borrow ideas from finite difference
methods. We approximate the kth order derivative operator, ∇k(x,t) with convolutional operators
defined using finite-difference kernels. In practice, we use 3 × 3 Sobel kernels [20] for first order
derivatives and Laplacian kernels [6] for second order derivatives. This is identical to the approach
adopted by Zhu et al. [25]; however, their setup is somewhat restrictive since they use Encoder-
Decoder (ED) networks to construct solutions for a given specific PDE.

In the casesof time-dependent PDEs, the generator Gθ must learn to first reproduce the initial
condition u0 at t = 0 in order to successfully generate the rest of the solution. This informs our
alternating minimization approach: we alternately minimize the boundary loss Lb and the PDE loss
Lp. While this is not strictly necessary as we can also minimize the Lagrangian form, we note that, in
practice, the convergence of the network is highly sensitive to the choice of the Lagrangian coefficient.
An incorrect choice leads to failure either by the model learning to generate the trivial solution, 0
or failing to converge. However, in our experience using the alternating approach always leads to
successful training.

The advantage of training a conditional generative model such as DiffNet is that we only need to
train a single model for a distribution of parameters characterizing the system. Our approach allows
for interpolating and (possibly) extrapolating over unseen boundary conditions and coefficients to
generate solutions.

Experiments. We demonstrate that the solution set of partial differential equations (PDEs) describ-
ing dynamics of physical systems can be accurately recovered using a DiffNet model. We mention

3



that data-driven deep generative models have already been proposed as fast surrogates to traditional
PDE solvers [25, 24]. However, DiffNet provides an alternate, data-free approach to solving PDEs.

Table 1: Relative `2 error of solutions generated
by DiffNet compared to that of ED networks.
The error is calculated with respect to numeri-
cal solutions. Note that a single trained DiffNet
shows comparable performance to a separate ED
networks[25].

Viscosity coef-
ficient ν

Frequency of bound-
ary conditions (c)

DiffNet ED [25]

0.002 2.0 0.08 0.04
4.0 0.13 0.08
5.5 0.29 0.30
6.0 0.20 0.15

0.006 2.0 0.08 0.04
4.0 0.10 0.14
5.5 0.25 0.29
6.0 0.15 0.21

0.02 2.0 0.08 0.08
4.0 0.07 0.14
5.5 0.18 0.23
6.0 0.09 0.16

0.03 2.0 0.08 0.09
4.0 0.06 0.12
5.5 0.17 0.20
6.0 0.08 0.12

We demonstrate this via a simple non-linear
PDE called Burgers’ Equation [2]. We use a
conditional input c to DiffNet to control the so-
lution set of Burgers’. Unlike [25], a single
well-trained DiffNet can generate solutions cor-
responding to a variety of boundary conditions
as well as varying physical parameters.

We first consider the inviscid form of Burgers’
Equation. This is a non-linear PDE encoun-
tered in fluid mechanics and nonlinear acous-
tics. The equation, defined in Eq. 3, assumes
a non-diffusive fluid through which a wave
with initial state fi is passed. Let U(x, t) =
[u0,u1, . . . ,un] be a particular solution of the
Burger’s equation. Then,

∂U

∂t
+ U� ∂U

∂x
= 0, U(x, 0) = fi(x). (3)

Suppose we model the field U(x, t) as an image
(where rows correspond to space and columns
correspond to time; see Fig 1). We train a vari-
ant of DiffNet that generates solutions Gθ(z) to
Eq. 3 for a given boundary condition as input.

In our experiments, we set b as a (discretized)
raised-cosine function parameterized on c. We
sample b uniformly from set B given as:

B = {x|x =
1

2
(1− cos(2πxc/d)) , c ∈ [3, 6]}}.

We show in Fig. 1 that DiffNet successfully learns to generate solutions for the family of boundary
conditions given by B.

Viscid Burgers’ equation. We extend the above algorithm to generate solutions for a family of
PDEs, with a physical scalar parameter indexing each PDE. We consider the family of viscid Burger’s
equation represented in Eq. 4 with the viscosity term, ν:

∂U

∂t
+ U� ∂U

∂x
= ν

∂2U

∂x2
. (4)

Similar to the inviscid case, we provide both the boundary condition b and the coefficient of viscosity
ν as input to the generator. Our input vector becomes z = c = [b, ν], where b is sampled uniformly
from B, and ν is sampled randomly from the set Unif[0.001, 0.05]. Fig. 1 depicts the solutions
corresponding to different combinations of b and ν.

We compare our DiffNet-based surrogate solutions to numerical solutions (computed using explicit
Euler methods) for both the viscid and inviscid cases in Fig. 1, and observe that our model is accurate.
Moreover, DiffNet shows effective generalization by generating solutions for boundary conditions
that were not used during training. While the results are preliminary, DiffNet shows promise towards
generalizing for a variety of boundary conditions and coefficients.

3 Discussion and Conclusion

We introduce a generative model, DiffNet that learns to solve families of PDEs for a variety of
boundary conditions. We show comparable results to both numerical PDE solvers as well as other
approach deep network based surrogate solvers.

4



Several potential directions of research remain. Given that generative models, such as GANs, can
model arbitrary probability distributions, our models could be further extended to solve stochastic
PDEs, which are more complex. Additionally, limiting the generator to images restricts its use to
problems in two dimensions. A compelling extension would be to extend InvNets for other domains
such as graphs.

References
[1] Cosmin Anitescu, Elena Atroshchenko, Naif Alajlan, and Timon Rabczuk. Artificial neural network

methods for the solution of second order boundary value problems. Computers, Materials & Continua,
59(1):345–359, 2019.

[2] Harry Bateman. Some recent researches on the motion of fluids. Monthly Weather Review, 1915.

[3] Jens Berg and Kaj Nyström. A unified deep artificial neural network approach to partial differential
equations in complex geometries. Neurocomputing, 317:28–41, 2018.

[4] Mulin Cheng, Thomas Y Hou, Mike Yan, and Zhiwen Zhang. A data-driven stochastic method for elliptic
pdes with random coefficients. SIAM/ASA Journal on Uncertainty Quantification, 1(1):452–493, 2013.

[5] Amir Barati Farimani, Joseph Gomes, and Vijay S. Pande. Deep learning the physics of transport
phenomena. arxiv preprint arXiv:1709.02432, 2017.

[6] Rafael C. Gonzalez and Richard E. Woods. Digital Image Processing (3rd Edition). Prentice-Hall, Inc.,
2006.

[7] Daniel Greenfeld, Meirav Galun, Ronen Basri, Irad Yavneh, and Ron Kimmel. Learning to optimize
multigrid pde solvers. In ICML, 2019.

[8] Jiequn Han, Arnulf Jentzen, and E Weinan. Solving high-dimensional partial differential equations using
deep learning. Proceedings of the National Academy of Sciences, 115(34):8505–8510, 2018.

[9] Jun-Ting Hsieh, Shengjia Zhao, Stephan Eismann, Lucia Mirabella, and Stefano Ermon. Learning neural
PDE solvers with convergence guarantees. In Proc. Int. Conf. Learning Representations (ICLR), 2019.

[10] Alexandr Katrutsa, Talgat Daulbaev, and Ivan Oseledets. Deep multigrid: learning prolongation and
restriction matrices. arXiv preprint arXiv:1711.03825, 2017.

[11] Yingzhou Li, Jianfeng Lu, and Anqi Mao. Variational training of neural network approximations of
solution maps for physical models. arXiv preprint arXiv:1905.02789, 2019.

[12] Zichao Long, Yiping Lu, Xianzhong Ma, and Bin Dong. Pde-net: Learning pdes from data. In ICLR, 2017.

[13] Craig Michoski, Milos Milosavljevic, Todd Oliver, and David Hatch. Solving irregular and data-enriched
differential equations using deep neural networks. arXiv preprint arXiv:1905.04351, 2019.

[14] Guofei Pang, Lu Lu, and George Em Karniadakis. fPINNs: Fractional physics-informed neural networks.
SIAM Journal on Scientific Computing, 41(4):A2603–A2626, 2019.

[15] M. Raissi, P. Perdikaris, and G.E. Karniadakis. Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems involving nonlinear partial differential equations.
Journal of Computational Physics, 378:686 – 707, 2019.

[16] Maziar Raissi and George Em Karniadakis. Hidden physics models: Machine learning of nonlinear partial
differential equations. Journal of Computational Physics, 357:125–141, 2018.

[17] F Regazzoni, L Dedè, and A Quarteroni. Machine learning for fast and reliable solution of time-dependent
differential equations. Journal of Computational Physics, 397:108852, 2019.

[18] Danilo Jimenez Rezende and Shakir Mohamed. Variational inference with normalizing flows. In Proc. Int.
Conf. Machine Learning (ICML), 2016.

[19] Justin Sirignano and Konstantinos Spiliopoulos. Dgm: A deep learning algorithm for solving partial
differential equations. Journal of Computational Physics, 375:1339–1364, 2018.

[20] Irwin Sobel and Gary Feldman. A 3x3 isotropic gradient operator for image processing, 1968.

[21] Eitan Tadmor. A review of numerical methods for nonlinear partial differential equations. Bulletin of the
American Mathematical Society, 49(4):507–554, 2012.

5



[22] Liu Yang, Dongkun Zhang, and George Em Karniadakis. Physics-informed generative adversarial networks
for stochastic differential equations. arXiv preprint arXiv:1811.02033, 2018.

[23] Kyongmin Yeo. Data-driven reconstruction of nonlinear dynamics from sparse observation. Journal of
Computational Physics, 2019.

[24] Yinhao Zhu and Nicholas Zabaras. Bayesian deep convolutional encoder–decoder networks for surrogate
modeling and uncertainty quantification. Journal of Computational Physics, 366:415–447, 2018.

[25] Yinhao Zhu, Nicholas Zabaras, Phaedon-Stelios Koutsourelakis, and Paris Perdikaris. Physics-constrained
deep learning for high-dimensional surrogate modeling and uncertainty quantification without labeled data.
arXiv preprint arXiv:1901.06314, 2019.

6


	Introduction
	Proposed Model: DiffNet
	Discussion and Conclusion

