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Introduction – In materials science and materials physics, first-principles theoretical investigation
of large and meso scale phenomena is often intractable in part due to the difficulty of sampling
configurations from a near-infinite set of microstates. Obtaining valid, large scale, low energy
microstates that are likely to occur in a macroscopic ensemble can be a time consuming sampling task
[1]. In most cases, Nature is able to sample such distributions efficiently, although there are notable
exceptions such as the glass transition. In silico, sampling the distribution of possible configurations
is a very difficult task due to the enormous number of free parameters (e.g. position, spin, charge,
etc.) defining a near-infinite number of microstates for systems of even a modest number of particles.
This “curse of dimensionality”, for all but the most trivial systems, precludes directly sampling
configuration space at non-zero, finite temperature [2]. Traditionally, Markov Chain Monte Carlo
sampling methods have been devised to obtain random samples from an underlying distribution, but
these algorithms, such as Metropolis-Hastings [3, 4], depend on the ability to efficiently evaluate both
the energy and property of a microstate (or at least the difference in these properties between two
states) which can, in many cases, be a very costly computation. Furthermore, this calculation must be
carried out repeatedly, many more times than the desired number of final microstates.

We use our previously reported technique [5], Regressive Upscaling Generative Adversarial Net-
work (RUGAN) (Figure 1a) that can generate unique microstates from the distribution of possible
microstates after observing only a very small subset. By conditioning the GAN on an associated
quantity, such as the total energy of the microstate, we can “request” that the generated configuration
be of a specific energy. Most importantly, our RUGAN can transfer the knowledge learned by
observing small scale microstates to generate arbitrarily large scale states beyond that used in training
(Figure 1c); it is not limited to small scale generation [6]. This technique enables one to access
large scale microstates while only running expensive sampling methods on a small number of small
systems.

Methods – We demonstrate the technique on a data set of porous graphene sheets, previously
presented in [7]. The study of such systems could be useful in predicting large scale material
properties, such as how the strength of a material depends on hole size or hole density (for example),
but acquiring a sufficient number of relevant, large scale microstates so as to compute statistics
is prohibitively expensive. The sheets are approximately 35 Å × 35 Å with a random number of
randomly-sized holes introduced. To represent these structures compactly, we one-hot encode pairs
of atoms and vacancies as a 4-state “spin” (Figure 1b), on a 14×16 lattice, similar to the encoding
used in [8].
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Figure 1: a) Schematic representation of the regressive upscaling generative adversarial network
(RUGAN) used in this work. The generator G takes a latent vector as input (concatenated with a
conditioning label channel) and, using translationally invariant convolutional layers, produces an
output encoding of a microstate. The critic C takes the proposed microstates from the generator
and microstates from a training set and learns to assign a score, differentiating whether the input
came from G or the training set. b) The encoding used to represent the hexagonal lattice on a 2d
rectangular grid. c) Through the adversarial training procedure, the generator of the RUGAN is able
to learn relevant features from small scale training examples and extend that knowledge to large scale
microstate generation. Since the generator uses only translationally invariant convolutional layers,
increasing the size of the input latent vector consequently increases the spatial scale of the output
microstate. Importantly, large scale generated microstates respect periodic boundary conditions so
they can be easily used with standard electronic structure approaches common in materials simulation.
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Our new generative adversarial network [9] is based a conditional Wasserstein GAN [10, 11]. The
generator G(z) in our work maps small latent samples to new configurations, a technique inspired
by texture synthesis [12]. It is comprised of three residual convolutional layers [13], one batch
normalization layer and a final 2d convolutional layer. All convolution operations are implemented
with periodic padding. The generator takes as input a block of noise sampled from a Gaussian
distribution zR ∈ N (0, 1)63×7×8 concatenated with a label channel L = {`}1×7×8 where ` is the
conditioning value, for a full latent input of z ∈ R64×7×8. Through its several layers, the generator
transforms this input into an output of G(z) ∈ {0, 1}4×14×16. Softmax activation is used along the
first dimension to collapse the probability distribution to a single, valid encoding of a sheet. The critic
C receives encoded configurations x from the training set distribution px, as well as the examples
G(z) originating from the generator’s output distribution pg. Through a series of layers shown in
Figure 1a, it outputs a single scalar value. Through training, the critic is optimized to calculate the
Wasserstein distance between px and pg, essentially differentiating between “true” (x ∼ px) and
“artificial” (G(z) ∼ pz) examples. Through the training process, the generator also learns how to
improve its capability, with pg improving towards matching px.

We train the RUGAN for 1000 epochs on a dataset of 65536 porous graphene sheets and their
corresponding density functional theory energy, computed using the extensive deep neural network
trained and validated in [7]. We use the Adam optimizer [14] with a learning rate of α = 10−4 and
hyperparameters β1 = 0, β2 = 0.9, and ε = 10−8 to minimize the WGAN loss function [15, 16]
with regularizing parameters λ1 = 10 and λ2 = 2 for the gradient penalty and consistency term
respectively. To stabilize the prediction of the Wasserstein distance, we perform 10 weight updates
(10 batches) of the critic for every update of the generator. After 1000 epochs, the generator has
learned to approximate the data distribution, and we can use G(z) to generate examples that appear
to come from px. Furthermore, since G was conditioned on the energies of the microstates, we can
request microstates of a specific energy.
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Figure 2: On the left we plot a heatmap of the energy of the generated microstates from the RUGAN
(computed using the extensive deep neural network of [7]) against the energy requested by means of
the conditioning label. The color indicates the density of each point, with brighter colors occurring
more often. On the right, we plot a histogram of the two distributions. The diagonal trend on the left
and the closely matching distributions on the right confirm that the generator has indeed learned to
produce configurations that match the requested energy values at the same length scale as the training
data.

Upscaling – In the generator, we intentionally use only translationally invariant layers (e.g. convolu-
tional layers) as well as periodic padding. Doing so enables the generation of larger scale microstates
that adhere to the periodic boundary conditions merely by changing the size of the input random
noise. For example, if we feed a z ∈ R64×16×14 noise block into the generator, G(z) will produce a
microstate G(z) ∈ {0, 1}4×28×32, representing a 70 Å × 70 Å sheet, four times as large as the states
on which it was trained.

Results – We train the RUGAN on the dataset of porous graphene sheets from [7], conditioning the
generator on the provided total energy (computed under the density functional theory framework),
normalized by the surface area. Once trained, the job of the critic is complete and we focus our
attention on what the generator has achieved. We feed 10 000 randomly generated latent blocks zR
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Figure 3: On the left we show an example large scale configuration, superimposed with an indicator
of the size of the training set. In the center we plot a heatmap of the energy of the larger microstates
produced by the RUGAN generator (computed using the extensive deep neural network of [7]) against
the energy requested by means of the conditioning label. The color indicates the density of each point,
with brighter colors occurring more often. On the right, we plot a histogram of the two distributions.
The diagonal trend on the left and the closely matching distributions on the right confirm that the
generator has indeed learned to produce configurations that match the requested energy values.

Figure 4: Our periodic configurations are fully compatible with standard materials simluation
protocols. Here we plot the density of states for four of the large scale distributions that were created
using the generator trained on small scale structures.

and conditioning values ` randomly sampled from the training data into the trained generator and
receive 10 000 encoded microstates. To verify that the generated examples do indeed represent the
energy requested through the conditioning, we used the extensive deep neural network, E, trained
independently of this work [7] to evaluate the energy of each generated microstate. Thus we can
compare the distribution of ` to the distribution of E(G(z)) to investigate the hypothesis that the
generator has successfully learned the training distribution px. We plot the two distributions in
Figure 2. In doing a KS test on the two distributions we get a KS score of 0.02 with a p-value of 0.19
and can conclude that the two distributions match.

Next, we repeat the process, feeding in larger random blocks to the generator, which in turn produces
spatially larger output configurations. We again use the extensive deep neural network to evaluate
the “DFT-energy” of the generated configurations and compare it to the energies requested through
conditioning. Similar to before, the distributions match (KS score 0.02, p-value 0.18, Figure 3) and
we can conclude that the generator is successful at producing output at scales larger than the scale on
which it was trained.

We can use the generated microstates as starting configurations for further density functional theory
calculations. For example, in Figure 4 we plot the density of states for four different configurations
generated through the RUGAN approach.

A trained RUGAN enables the fast and accurate generation of energetically relevant microstates
after being provided a small number of training examples, enabling rapid sampling of configuration
space. Furthermore, the RUGAN, with its translationally invariant and periodic design empowers
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one to sample the configuration space of large scale structures, a task that is traditionally infeasible,
providing a basis for the investigation of large scale structures.
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