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Abstract

We investigate the use of a deep seq2seq architecture to solve a complex inverse
problem in biophysics, that is to accurately decode DNA strands from noisy experi-
mental data. The data corresponds to the thermal unbinding time of collections of
oligonucleotides on unzipped DNA together with approximate hybridization loca-
tion along the strand. Without noise, this data for all 64 possible triucleotides build
from the four bases allows for DNA deciphering. However, experimental noise
severely impairs this reconstruction. By modeling the various sources of noise, we
train a deep neural network on synthetic data to solve this inverse problem. Various
benchmarks against noise intensity demonstrate the relevance of this approach to
real world DNA decoding.

1 Introduction

In a seminal series of work work by Pihlak et al. [2008] and Ding et al. [2012], an innovative
technique for DNA decoding was put forward, based on mechanics. The idea is to unzip a DNA
molecule by pulling each strand apart using magnetic tweezers, and then to dip it in a bath containing
an oligonucleotide, a very short single stranded sequence of bases. This oligonucleotide will thus
bind to the DNA strands typically where it finds a complementary sequence. The hairpin is then
pulled out of the bath and the force keeping it open is slowly released. If the strands were pristine, the
DNA strands would just zip back into the original molecule. The local presence of oligonucleotides
momentarily slows down this zipping process, allowing for spatial identification of the binding sites
along the chain. This information can be made more accurate through cycling, allowing for the
accumulation of statistical information in the form of binding histograms. Collecting such data for all
possible, say, trinucleotides, i.e. all 64 three-letter combinations of base pairs, allows in principle for
the full sequence decoding. It turns out that this can actually be done, but with various sources of
experimental noise which severly impair the final reconstruction. For example, pulling on the strands
stretches them, introducing imprecision in the location of the binds.

Modelling the various sources of noise with realistic, experimentally driven parameters, we have
devised a way to generate vast amounts of synthetic data in the form of approximate binding
probabilities along the strands for all 64 trinucleotides. We have then trained a neural network to
reconstruct the base sequence from this noisy data. The trained net was able to achieve significant
decoding accuracy, beating previous efforts based on other algorithmic techniques, illustrating the
power of neural networks to solve such a complicated inverse problem. This accuracy was aso found
to be robust for values of the noise comparable to that found in the experiments.
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Figure 1: Example of experimental binding time histograms, in this case for sequences of 8 bases
(from Ding et al. [2012])

.

2 Results

2.1 Training data

The data generation mimics the output of the experiment (see Fig 1) it picks a random DNA sequence
and generates histograms of binding probabilities along the chain for all 64 trinucleids, introducing a
tunable random stretch, blurring the correspondance between space and bases, fluctuations on the
position of the binds and on the binding force. This input data is space based: we pick a physical
length in nm and consider sequences of this given length. The target data is simply the one-hot
encoding of the base sequence.

2.2 Network architecture

The input of the network consists of these 64 ’temporal’ sequences of the binding histograms, where
time here is space along the DNA strand. The representation layer of the network is two series of
5 aggregated residual 1D convolutional layers as those introduced by Xie et al. [2017], each with
8 blocks of 8 filters with doubling dilation rate, borrowing from Dieleman et al. [2018]. All non-
linearities are leaky relu units. This representation, followed by two LSTMs with 64 memory units, is
the encoder of a sequence-to-sequence architecture implementing a classical attention mechanism,
as described in Chorowski et al. [2015]. The decoder, a stack of two 64-unit LSTMs, is fed the
internal state of the encoder. Encoder and decoder outputs are doted and thresholded to produce the
attention matrix, which is then doted with the encoder output to form the context. This context is
then concatenated with the decoder output and fed to two time-distributed dense layers, the first one
with 64 units and a tanh activation, and the last one 5 units and a softmax, to produce one of 4 coding
base and a start character. We have trained the net with output sequences of 50 bases, in batches of
32 sequences, with teacher forcing. The net was implemented in keras running with the tensorflow
kernel. For each data point, it was trained for several days on a NVIDIA Titan Xp GPU with an
adjusted learning rate schedule.
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Figure 2: Benchmark of accuracy versus levels of drift noise in test set. Each line represents a model
trained assuming a specific amount of drift noise

.

2.3 Benchmarks

If the peaks in the binding time histograms were perfectly aligned with the positions of the underlying
trinucleotides, the decoding problem would be almost trivial. Indeed if we knew the exact positions
of the trinucleotides, we could easily reconstruct the full DNA sequence from the overlaps. Unfortu-
nately, in actual experimental conditions, the peak position fluctuates around the actual position of
the trinucleotide by a random shift. The typical shift (as measured by the standard deviation) is called
the drift noise and constitutes the main hindrance to perfect reconstruction. Experimentally the levels
of drift noise range from 1.5 nm to 3 nm.

We generated several test sets with varying levels of drift noise. For each test set, we compared the
actual and predicted DNA sequences and simply computed the average accuracy to quantify the
model perfomance. In Fig 2, we benchmark several models each trained with a different amount of
drift noise. As expected, for all models the performance degrades with the amount of drift noise in
the test set. For the model trained assuming a drift = 1.5 nm (blue line) the accuracy is very good at
small amounts of drift but sharply decreases for drifts higher than 1.5nm. When we consider models
trained with higher amounts of drift (orange, green and red lines), the accuracy can decrease but
still remains quite good for low values of drift noise, while the model becomes much more robust
to higher values of drift. Overall, for the typical amount of drift noise obtained experimentally (up
to 3nm), the trained models can achieve compelling decoding accuracy (for instance always greater
than 80% for the green and red models).
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3 Conclusion

This paper proposes a new method for inferring DNA sequence from binding time histograms. We
exploit the fact that the forward process (from the DNA sequence to the binding histograms) can be
easily simulated to generate vast amount of synthetic data. Given the intrinsic difficulties in the direct
writting of the inverse model, this makes a deep learning approach extremely appealing.

Using these synthetic data, we thus trained a neural network to solve the inverse problem (predict
the DNA sequence from the binding histograms). The accuracy obtained on synthetic test sets, with
typical amount of noise observed experimentally, is encouraging (from 80% decoding accuracy to
nearly perfect reconstruction). The predictive performance depends crucially on the level of drift
noise that was indeed expected to be the main hindrance to perfect reconstruction.
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