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Abstract

Dark matter substructures are interesting since they can reveal the properties of
dark matter. Collisionless N-body simulations of cold dark matter show more
substructures compared with the population of dwarf galaxy satellites observed in
our local group. Therefore, understanding the population and property of subhalos
at cosmological scale would be an interesting test for cold dark matter. In recent
years, it has become possible to detect individual dark matter subhalos near images
of strongly lensed extended background galaxies. In this work, we discuss the pos-
sibility of using deep neural networks to detect dark matter subhalos, and showing
some preliminary result with simulated data. We found that neural networks not
only show promising results on detecting multiple dark matter subhalos, but also
learn to reject the subhalos on the lensing arc of a smooth lens where there is no
subhalo.

1 Introduction

In cosmology, the cold dark matter (CDM) model, serves as the standard paradigm for cosmological
research in the past decade. Despite their success on large scale, there exist several tensions on
small-scale (sub-galactic) structures. The collisionless N-body simulations of cold dark matter show
more substructures compared with the population of dwarf galaxy satellites observed in our local
group [/1} 2, [3]]. Studies indicated that baryonic physics (e.g. stellar feedback and low star-formation
efficiency) that are not being modeled in the simulation could help alleviate the tensions. Others
suggest that modification of the nature of dark matter (e.g. self-interaction, warm/fuzzy dark matter)
could also produce a lower population of dark matter subhalos. Therefore, understanding more about
the population of dark matter sub-halos would be crucial to test the cold dark matter scenario. In
recent years, it has become possible to detect individual dark matter subhalos near images of strongly
lensed extended background galaxies. Several groups claimed detection of dark matter subhalos
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via comparing smooth and perturbed lens model [4} |5]], though some of them might be line-of-sight
subhalos as pointed out by [6]].

Traditional ways of detecting dark matter subhalos in strong gravitational lensing primarily based on
maximum likelihood method requires precision lens modeling due to the fact that we do not know the
ground truth of lens potential and the morphology of source galaxies, so one would need modeling
the smooth model (strong lensing without dark matter substructures) and use penetrative method to
build up a perturbed model (lensing with substructures) to search for dark matter subhalos. However,
if the lensing system contains multiple subhalos, it could be quite computational expensive due to
the growth of model parameters. Furthermore, we expect to detect nearly 170, 000 strongly lensed
galaxies [[7]] with LSST and Euclid in the future. It would be nearly impossible to study the details
of each individual system. Therefore, automatic ways of doing data analysis would be crucial for
studying dark matter substructures in the future. Machine learning, in particular deep learning would
be a perfect tool for the task.

For strong lensing science, Hezaveh et al. trained neural networks with simulated strong lensing
images output of each strong lensing images correspond to five parameters of a singular isothermal
ellipsoid model [|8]. Their method had demonstrated that neural networks could be a powerful tool
to preform fast and automated analysis on strong gravitational lensing. In this work, we further
investigate the possibility of using deep neural networks to detect dark matter subhalos in strong
gravitational lensing. We found that the neural networks are able to detect multiple dark matter
subhalos on simulated data without further lens modeling. Furthermore, we found that just by training
with the lens images as input and probability map of dark matter substructures as target, the neural
networks learn to reject subhalo on the smooth lens where there are no substructures.

2 Strong Gravitational Lensing Simulation and the Effect of Dark Matter
Subhalos

According to General Relativity, the photons from distant galaxies would follow geodesic. If there
exist gravitational potential along the line-of-site from the observer, we would be able to see multiple
images or Einstein ring made of the same source galaxy. In order to obtain a huge amount of lensing
images for training, simulation of strong lensing images with subhalos is required since claimed
detection of individual dark matter subhalos in strong gravitational lensing are insufficient (< O(10))
for typical size of the training set for deep learning (=~ O(10% — 10%)).

Following the lensing simulator, we use the raytracing technique to simulate strong gravitational lens
images assuming thin lens approximation. In this work, we assume the subhalos are near the lens
plane, so the lens could be decomposed into two parts, the smooth model described as the main halo
that contributes to most of the angle of deflection, and the dark matter substructures would perturb
the lensing images slightly (which is often called perturbed model). We build 2 sets of simulation,
one Singular Isothermal Ellipsoid (SIE), another use a singular elliptical power law surface density
profile as our macro lens models [9].

In this paper, we use a probability map to describe the distribution of dark matter subhalos. In
simulations, we generate the lensing images with two sets of parameters (€ s,00tn fOr smooth model
parameters, e.g. Einstein radius 0, ellipiticity el and €2, T epter and Yeenter for lens center...etc)
and subhalo parameters ({subhalos €-&- Ti,sub»> Yi,sub fOr subhalo position, M; 4, for subhalo mass).
Here we focus on the distribution of subhalos positions x; sus. ¥i,sub- TO generate the probability
map, we define a target to density function. It turns subhalos’ positions into a Gaussian distribution
with a cutoff applied. Since it is a probability problem, it would be straight to study the probability of
subhalos using neural networks.

3 Neural Network Architecture and Training Strategy

We apply two states of the art CNN architecture in this work: DenseNet, and ResNet. We further
modified the last few layers from the original network to make the neural network output the
probability map. In order to output the probability density map, we make sure the modification of the
neural network would not suffer from information bottleneck [|10]].
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Figure 1: Simulation of Strong lensing with multiple subhalos. The figure from the left are lensing
images, the smooth model, source galaxy, subhalo target map. The effect of subhalos have been
magnified so that they are visible for demo.
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Figure 2: Schematic visualization of DenseNet

A simulated lens image has a dimension of 224 x224. Each simulated image duplicate 3 times
to make it filled in the original R,G,B channel of ResNet and DenseNet. The input images are
also normalized to [0,1] before feed into the neural net. Each neural net has outputs which are both
56x56x1 as subhalo probability map. The output is trained against targets with Binary Cross Entropy
Loss (BCELoss) of the dark matter subhalos probability map.

4 Result

For multiple subhalos, the neural networks are also able to recover the location of three individual
subhalos on the probability map at Figure. [3]

When there is no subhalo in the system, the probability map shows that there would be no detection.
Surprisingly, when we zoom in the lower probability region, the neural networks shows that the
probabilities around the lensing arc are smaller then the surround region. This shows that even though
the neural networks was original designed to defect dark matter subhalos, it actually surpass our
expectation and learn to reject the subhalos on the lensing arc of a smooth lens where there is no
subhalo as shown in Figure. 4

5 Summary and Discussion

In this work, we show that the neural networks are able to perform fast and automatic detection of
dark matter subhalos in strong gravitational systems. We found that with using dark matter subhalos
probability map as training target for the neural network, the neural networks are able to detect
multiple subhalos in strong lensing image at once without any lens modeling. Furthermore, just by
training the neural networks to detect dark matter subhalos, the neural networks actually learn to
reject the subhalos on the lensing arc of a smooth lens where there is no subhalo.

Our method shows dramatically speed up in the task. It took less than a second to make a prediction
on a lensing image with one graphic processing unit (GPU) once the neural networks have been
trained. Traditionally, it would take more than days to for human expert to do preform precision lens
modeling and further detect dark matter subhalos in strong lensing system.

In our simulation, there are many cases where the lensing deforms from the SIE (or pure power-law)
model by the cumulative effects of subhalos on the arcs, or there might be multiple subhalos on
the lensing arc that that traditional method would be difficult to deal with. While wrapping up this
project, we noticed similar work by [11]]. We would like to point out that our work focus more on
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Figure 3: Lensing image and subhalos probability prediction. Noticed that there exist multiple
subhalos both on the lensing arc and at the center of the lens. Only the subhalos on/near the lensing
arc are treated as detectable subhalos. The neural networks predict the subhalo position correctly.
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Figure 4: Lensing image and subhalos probability prediction. In this example, we have no subhalo in
the system and the neural networks predict no subhalo. Interestingly, the neural network predicted
lower probability where the lens is smooth and hence provide a way to reject the probability of
subhalos.

detecting individual subhalos while [|11]] focuses more on the cumulative effective of all dark matter
substructures. In general, neural networks show promising results for detecting multiple subhalos as
well as locates subhalos are in complicated lens systems, which could constraint dark matter models
in the future.
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