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Abstract

Retrieving parameters by matching simulations to experimental or observation
data is a common procedure in many areas in physical sciences. However, as the
procedure requires multiple trial-and-error simulation runs, it could take hours
to weeks to get meaningful results. The slow process of parameters retrieval is
hindering large-scale data processing, real-time diagnostics for better experimental
control, and sensitivity assessment over large parameters space. Here we show
that the process can be accelerated by a factor of up to one million using deep
neural networks with optimization algorithms. The method is shown to be robust
and quick in retrieving parameters for diagnostics and observations in various
research fields: high energy density physics, inertial confinement fusion, magnetic
confinement fusion, and astrophysics. The generality of the presented method
allows it to be adapted to other parameters retrieval processes in other fields.

1 Introduction

Our ability in modelling processes has allowed us to measure properties that cannot be observed
directly. The properties are often retrieved indirectly from some observable signals with the help of a
predictive model. Often, only the predictive forward model is available and the inverse model, which
relates the observable signals back to the parameters, is unavailable. In this case, the parameters are
retrieved by trying multiple sets of the parameters in the forward model until it reaches an agreement
with the observed signals.

Parameters retrieval processes has been playing important roles in building our understanding on
physical systems. For example, retrieving solar properties from observations by standard solar model
[1}, 2], obtaining cosmological parameters from the observed cosmic microwave background [3-5]],
temperature and density measurements of a dense plasma from scattered x-ray spectrum [6H8]], and
geophysical exploration by reflection seismology [9].

Automated approaches in parameters retrieval are typically done by utilizing optimization algorithms
[10] to minimize a loss function between the simulated signals and the actual observed signals.
Although the parameters retrieval can be done automatically, the process still relies on evaluating the
simulations thousand times which can be very slow.

As the speed of parameters retrieval is limited by the simulations, speeding up the simulations would
speed up the parameters retrieval process. One way to speed up a simulation is by emulating it with a
deep neural network that takes the same input parameters and produces the same outputs with low
latency. Integrating the emulating deep neural networks with an optimization algorithm lets us obtain
a set of parameters that best fits observed signals almost instantaneously instead of spending hours or
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Figure 1: (a) The architecture of the Deep Emulator Network (DEN) which consists of fully connected
layers (FCL), transposed convolutional layers, convolutional layers, and an attention layer. (b-f)
Comparison results between the simulated output signal produced by the actual simulations (blue
lines) from the test dataset and the emulators (orange lines) for (b) x-ray Thomson scattering, (c)
optical Thomson scattering, (d) edge localized modes diagnostics, (e) galaxy halo observation, and
(f) x-ray emission spectroscopy.

days to get the results. The speed up also enables sensitivity analyses which could discover sensitive
and insensitive regions of a diagnostic.

2 Deep Emulator Networks

We trained deep emulator networks (DENs) to emulate 5 diagnostics in plasma physics and astro-
physics. They are x-ray Thomson scattering (XRTS) [6H8], x-ray emission spectroscopy (XES)
12], optical Thomson scattering (OTS) [13]], edge localized modes (ELMs) diagnostics [14]], and
galaxy halo observation (Halo) [15]]. Each simulation takes an input of a vector with 3-14 elements
and produces observable of 1-10 one-dimensional signals. The fastest simulation is Halo which runs
in 3 seconds and the slowest ones are XES and ELMs which take about 10-20 minutes.

The architecture of the deep emulator network (DEN) is shown in Figure E[a). It consists of
fully connected layers at the beginning followed by a combination of transposed convolution and
convolution layers. It ends with an attention layer to capture the global dependency 7).

The input to the DEN is a vector of parameters and the output is 1-10 channels of one-dimensional
signals with 250 points. The DEN is trained to minimize the mean squared error (MSE) between its
outputs and the simulation outputs for parameters inside certain bounds. We generated 7,000 random
sets of parameters and simulated signals for training, 3,000 for validation, and 4,000 for test.

After the DEN is trained, it can produce the simulation outputs accurately, as shown in Figure [T(b-f).
DENSs can produce outputs for 256 sets of input parameters in about 5 milliseconds using a Titan X
GPU card.

3 Finding the best parameters

With the DENSs that could emulate the simulations accurately in much shorter time, we can use them
to retrieve parameters that best fit observed signals. Given an observed signal, we run an optimization
algorithm to find the parameters that minimizes the error between the signal and the DEN’s output.

The optimization algorithm we use for this purpose is the SNES due to its proven successes
and simplicity. Although the gradient information can be calculated with DENs, we found that using
evolutionary-based algorithms (e.g. SNES and CMA-ES [20]]) can obtain the best fit parameters
faster and more robust than using gradient-descent algorithms (e.g. L-BFGS [21])).

The parameters retrieval test was done by choosing a set of parameters and a simulated observed
signal from the dataset and let the SNES retrieve the parameters using only the observable from the
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Figure 2: (a) The speed up achieved in obtaining the best parameter using the fast emulator compared
to the one using the simulation. (b) Histograms of relative error obtained for the processes done by
the simulations (blue) and the emulators (orange) from 100 data points in the dataset for galaxy halo
observation. The dashed lines in (b) show the median of the relative error distributions.

dataset. For the comparison, the parameters retrievals were done twice for each data point, one is
using SNES with the actual simulation and another one is using SNES with the DEN.

To evaluate the quality of the retrieved parameters, the relative error is calculated. The relative error
is defined by the absolute deviation between the retrieved parameter and the actual parameter divided
by the actual parameter. The relative errors of the parameters retrieved using the DENs and the actual
simulations are compared in Figure 2|b) for galaxy halo observation.

From the Figure, we can see that the relative errors of the parameters retrieved with DENS is
comparable to the parameters retrieved with actual simulations. The medians of the relative error
distributions obtained by the DENs are close to the median values obtained by the actual simulations,
except for the parameters to which the diagnostics are insensitive (e.g. alpha and sig_logm).

With the similar errors of the retrieved parameters, the parameters retrieval using DENs can be done
in 80-300 milliseconds using a Titan X GPU card. This is much quicker than parameters retrieval
using the actual simulations which could take hours to days with 8 CPU cores. The average speed up
factors of parameters retrieval using the DENs with a GPU card compared to the actual simulations
with 8 CPU cores are shown in Figure 2[b). We can see that the parameters retrieval using the
DENSs can be a million times faster than the parameters retrieval using the actual simulations without
compromising much of the retrieval quality.

4 Discovering insensitive regions

In Figure[2|b), there are some parameters that have large relative errors even though they are retrieved
using the actual simulations. This is due to the presence of multiple regions in the parameters space
that maps into a very similar observable signal. This effect can be seen on Figure [§]where we compare
the observable from the dataset and the observable signals at the best fit parameters obtained by the
emulators. In those cases, we can see that even though the relative error of the parameters can be up
to 100% or more, they can produce very similar observable signals.

Given an observable signal from one point in the parameters space, one can perform Bayesian
posterior sampling with an MCMC algorithm to discover the parameters span that produces similar
observable signals. If the parameters span is large, then we know that the diagnostic is insensitive
at that point in the parameters space. Finding insensitive regions of a diagnostic in the parameters
space requires performing Bayesian posterior sampling for many points in the parameters space.
Performing this with an actual simulation could take up to a year even if the simulation runs in a few
seconds. With the fast emulator, the process can be done in a few hours.
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Figure 3: (Top rows) The comparison between the true observable where the parameters are to be
retrieved from (blue) and the simulated observable signals produced by the fast emulator (orange)
and the actual simulation (green) using the best fit parameters found by the fast emulator. (Bottom
rows) The relative error of the best fit parameters retrieved by the fast emulator and the actual known
parameters.
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Figure 4: Global sensitivity analysis results for XRTS on specified bounds. The color of each point
in the boxes represents the 1o uncertainty (i.e. half of the 68% confidence interval’s width) of each
parameter distribution that produces spectra within the 3.5% bounds.

We searched for the sensitive and insensitive regions for the XRTS using the trained DEN by
evaluating the sensitivity at 3,000 points in the parameters space. For each evaluated point, we run
the ensemble MCMC algorithm to get the parameter ranges that produce observable signals that
lie within the 3.5% bound of the observable signal of the evaluated point. The parameter ranges that
fit the criteria above at each point are shown in Figure 4]

From the figure, we can see the regions where the parameters have sensitive region and insensitive
region. For example, the temperature and density measurements have relatively small uncertainties
and high sensitivities when the ionization is high. We can also see that the ionization measurement
have a sensitive region where the ionization is low (i.e. less than about 1) and where it is high (i.e.
greater than about 3). This kind of analysis results would be very expensive to obtain with the actual
simulations, even if the simulation runs in a few seconds.

5 Conclusions

We have presented a technique combining deep neural networks with optimization to speed up the
process in retrieving parameters from observations using simulations. The parameters retrieval can
be accelerated up to a million times faster without losing much of the accuracy. The accelerated
parameters retrieval process opens up a possibility of performing various sensitivity analysis to
discover sensitive and insensitive regions that would be prohibitively expensive without the emulator.
‘We have shown that the method can be applied to diagnostics in various research fields in plasma
physics and astrophysics. The presented method can be easily adapted to other diagnostics.
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