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Abstract

Atomic partial charges are crucial parameters for Molecular Dynamics (MD) simu-
lations, molecular mechanics calculations, and virtual screening, as they determine
the electrostatic contributions to interaction energies. Current methods for calculat-
ing partial charges, however, are either slow and scale poorly with molecular size
(quantum chemical methods) or unreliable (empirical methods). Here, we present
a new charge derivation method based on Graph Nets—a set of update and ag-
gregate functions that operate on molecular topologies and propagate information
thereon—that could approximate charges derived from Density Functional Theory
(DFT) calculations with high accuracy and an over 500-fold speed up.

1 Introduction

Molecular machine learning, with its significance in drug and materials design gradually being realized
by the community, has been maturing rapidly. Recently, the focus has shifted from embedding
molecules in a fixed-dimensional feature space to fit architectures borrowed from neighboring
fields toward developing representations that respect the combinatorial, discrete nature of molecular
structures. Among the newly developed algorithms are a plethora of graph-based methods [6, 9, 4,
3, 12, 13, 14, 11, 12], which represent molecules as graphs, atoms as nodes, and bonds as edges.
Generally speaking, such representation makes it possible for the operations on modelled molecules
to preserve the permutation invariance and equivariance with regard to chemically equivalent atoms.

Despite the promising results achieved by these architectures in predicting per-molecule attributes
(hydration free energies, binding affinities, lipohilicities, etc.), little attention has been paid to per-
atom and per-bond regression tasks. This is drastically different from the general applications of graph
learning, where per-node and per-edge problems are far more common. The prediction of atomic
partial charges, we believe, could serve as an interesting pivotal task: As commercially available
compound libraries now exceed 109 molecules [8], there is a significant need for fast methods for
determining high-quality partial charges for small organic molecules for virtual screening.

∗Corresponding Author

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.



In addition, next-generation force fields that consistently treat small molecules and biomolecules
would greatly benefit from a fully consistent approach to determining charges for biopolymers (both
naturally occurring and covalently modified) that exceed sizes practical for current quantum chemical
calculations without requiring fragmentation and capping. This task may be particularly suited to
machine learning methods due to the relative ease of generating an arbitrarily large number of partial
charge training examples derived from high-level quantum chemistry.

Our model was built on top of the full-block Graph Net structure [1], where edges and the global
node are attributed and connected to the nodes. Maximal generality and flexibility are provided by
this framework so that, with certain choices of update and aggregate functions, the network could
specialize into either a Message Passing Neural Net[6] or Graph Convolutional Network[9]. We made
contributions by designing and tuning its component functions while preserving the permutation
equivariance end-to-end, as well as enforcing a net charge constraint—the sum of the atomic partial
charges equal the known total charge of the molecule—as a tractable quadratic program. We also
optimized the batching pipeline for molecular graphs. This architecture is able to estimate charges
derived from DFT calculations with an RMSE of 0.0223 e on a subset of molecules from ChEMBL [5]
curated by Bleiziffer et al. [2]. Also, within the dataset, the prediction accuracy does not decrease as
the size of the system increases. We therefore believe that this method, with results in agreement with
quantum chemical calculations and computation time similar to empirical methods, has the potential
to replace existing charge derivation schemes widely used in MD calculations and virtual screening
approaches. Compared to the Random Forest model proposed by Bleiziffer et al. [2], our model
does not depend on rule-based fingerprints and is differentiable everywhere, and could therefore be
optimized concurrently with forcefield parameters.

This work is part of a project that uses graph representations in molecular learning, termed GIMLET
(Graph Inference on MoLEcular Topology). The infrastructure was implemented in Python 3.6 with
no dependencies other than TensorFlow 2.0 [10], in order to ensure the pipelines can be integrated
into TensorFlow computation graphs, and executed in a parallel and distributed fashion. The code is
open source (https://github.com/choderalab/gimlet) and available under the MIT License.

2 Architecture

2.1 Molecules as graphs

A graph can be defined as a tuple of three sets:

G = {V, E ,U} (1)

where V is the set of the vertices (or nodes) (atoms), E the set of edges (bonds), and U = {u} the
universal attribute. We model the molecules as node-, edge-, and globally attributed, undirected
graphs, whose nodes are atoms and edges are bonds. In this notation, the connectivity is included
in E . In our implementation though, a vector a denoting a sequence of atomic numbers and a
upper-triangular adjacency matrix A is sufficient to describe the topology of the graph.

2.2 Graph Nets

There are three stages in both the training and inference process: initialization, propagation, and
readout, which, in our setting, are governed by sets of learnable functions. Initialization stage is
the phase in which the data is abstracted as graph entities. Driven by the idea that the chemical
environment of atoms could be realized in rounds of message passing, we featurize the atoms simply
using one-hot encodings of the element identity, which is then fed into a feedforward neural network
to form the vertex attributes at t = 0,

v
(−1)
ij =

{
1, atom i is element j;
0, elsewhere,

,v(0) = NNv0(v(−1)) ∈ RNatoms×dv , (2)

where i ∈ {1, 2, ..., Natoms} and j ∈ {1, 2, ..., Nelements}, and dv is the fixed dimension of node
attributes. Edge attributes are initialized as the output of a feedforward network which takes the
bond order (averaged over resonance structures) as input; global attributes are initialized as zeros as
placeholder.

e(0) = NNe0(BO) ∈ RNbonds×de ,u(0) = 01×du , (3)
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where de is the hidden dimension of edges and du is the hidden dimension of global attributes. In
propagation stage, the framework we adopted follows a formalism by Battaglia et al,[1] where, in
each round of message passing, the attributes of nodes, edges, and the graph as a whole, v, e, and u
are updated by trainable functions in the following order:

e
(t+1)
k = φe(e

(t)
k ,

∑
i∈N e

k

vi,u
(t)), (edge update) (4)

ē
(t+1)
i = ρe→v(E

(t+1)
i ), (edge to node aggregate) (5)

v
(t+1)
i = φv(ē

(t+1)
i ,v

(t)
i ,u(t)), (node update) (6)

ē(t+1) = ρe→u(E(t+1)), (edge to global aggregate) (7)

v̄(t+1) = ρv→u(V (t)), (node to global aggregate) (8)

u(t+1) = φu(ē(t+1), v̄(t+1),u(t)), (global update) (9)

where Ei = {ek, k ∈ N v
i } is the set of attributes of edges connected to a specific node, E is the set of

attributes of all edges, V is the set of attributes of all nodes, and N v andN e denote the set of indices
of entities connected to a certain node or a certain edge, respectively. φe, φv, and φu are update
functions that take the environment of the an entity as input and update the attribute of the entity,
which could be stateful (Recurrent Neural Networks) or not; ρe→v, ρe→u, and ρv→u are aggregate
functions that aggregate the attributes of multiple entities into an aggregated attribute which shares
the same dimension with each entity. Although in this work, the definition of edges is limited to that
connect exactly two nodes (bonds connecting two atoms), we could expand the notion of edges to
include hyperedges, to connect more than two nodes (angles and torsions).

Finally, after a designated number of rounds of propagation (message passing), in the readout stage,
t = T , a readout function fr that takes the entire trajectory as input summarizes the information and
yields the final output of desired dimensionality,

ŷ = fr({{v(t), e(t),u(t)}, t = 1, 2, ..., T}). (10)

2.3 Graph Batching

The number of nodes (atoms) in molecule graphs varies greatly and is usually much smaller than,
say, the number of individuals in a social graph. For efficient backpropagation, especially on GPUs,
molecule graphs need to be combined into larger ones, rather than partitioned or padded to the same
size. This could be achieved by concatenating the attribute vectors of graphs and merging their
adjacency matrices of graphs as

Ãkl =

({A}j)k− ∑
m<j

|Vm|,l−
∑

m<j
|Vm|,where

∑
m<j

|Vm| ≤ k, l <
∑

m<j+1

|Vm|;

0, elsewhere.
(11)

After choosing an appropriate batch size, which is the first dimension of Ṽ and Ã, we repeat this
process until another addition of small graph into the batch would result in

∑
i

|Vi| greater than the

batch size, upon which the adjacency and the concatenated attributes will be padded to the batch size
and another batch will be initialized.

2.4 Determination of atomic partial charges respecting a net charge constraint

One of the challenges in predicting atomic partial charges is to satisfy the constraint that their sum
should equal to the total charge of the molecule:∑

i

q̂i =
∑
i

qi = Q, (12)

where Q is the total (net) charge of the molecule, which could be positive, negative, or zero. Naively,
we could either not explicitly encode this constraint and let the model "learn" it, or, as in Bleiziffer et
al. [2], redistribute charge necessary to cancel any "excess charge" evenly to all atoms. Experimentally,
none of these methods achieved satisfactory results when used with our model (with no constraint,
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RMSE is around 0.280 e.) We instead adopted a trick proposed by Gilson et al. [7] and use our model
to instead predict the first- and second-order derivatives of the potential energy E w.r.t. the atomic
partial charge, which happens to correspond to the electronegativity ei and hardness si of the atom in
its chemical environment.

ei ≡
∂E

∂qi
, si ≡

∂E2

∂2qi
. (13)

This problem could thus be formulated as follows: we use the graph net to make a prediction of the
electronegativity and hardness, {êi, ŝi}, and the partial charges could be yielded by minimizing the
second-order Taylor expansion of the potential energy contributed by atomic charges:

{q̂i} = argmin
qi

∑
i

êiqi +
1

2
ŝiq

2
i , (14)

subject to 12. Fortunately, using Lagrange multipliers, the solution to 14 could be given analytically
by:

q̂i = −eis−1i + s−1i

Q+
∑

i eis
−1
i∑

j s
−1
j

, (15)

whose Jacobian and Hessian are trivially easy to calculate. As a result, the prediction of {êi, ŝi}
could be optimized end-to-end using backpropagation.

3 Results and Discussion

Element R2 RMSE(e) # Samples
C 0.99320.99330.9930 0.02170.02190.0215 116864
N 0.97970.98050.9789 0.03700.03760.0364 19490
O 0.97130.97250.9700 0.03420.03480.0336 21503
S 0.99350.99420.9928 0.05240.05510.0496 2955
P 0.85820.99430.7265 0.06690.09500.0339 341
F 0.95170.95770.9458 0.01320.01380.0126 1967
Cl 0.77810.80490.7516 0.02530.02700.0236 1215
Br 0.81660.84580.7878 0.02330.02520.0214 572
I 0.28190.6376−0.0178 0.19480.20170.1874 105
H 0.97440.97500.9739 0.01440.01450.0142 134799

Overall 0.99360.99370.9935 0.02230.02250.0221 299811

Figure 1 (Left): Predicted vs true partial charge of atoms in held-out test set color-coded by
element types. A kernel density estimate of the distribution of charges for each element are plotted
on the axes.
Table 1 (Right): R2 and RMSE of the prediction and number of data points in held-out test
set. The 95% confidence interval is also annotated.

We tested our model on a dataset consisting of 350 259 molecules in ChEMBL database, selected
by Bleiziffer et al. [2] The reference charges are also calculated by Bleiziffer et al. [2] using DFT
with dielectric permittivity ε = 4. We randomly split the training and test set with 80:20 ratio.
Random search on a limited hyperparameter space was conducted for hyperparameter tuning, with
the hyperparameter set with highest 5-fold cross validation results chosen. On the test set, the error
between the true and predicted value, RMSE ≈ 0.02 e, is roughly within the difference between
DFT and AM1-BCC calculations, whereas it takes around 0.03 seconds to calculate the charges for a
single molecule, which is approximately 500 times faster than AM1-BCC methods. We therefore
argue that such method has the potential to replace AM1-BCC in calculating the charges for small
molecules for MD simulation. Moreover, within the dataset (where the largest molecule has 63
atoms), we observed no positive correlation between the prediction error and the number of atoms in
the molecule, indicating potential scalability of this model.

One potential problem of training our model on this dataset is that, charges yielded from DFT
calculations are also dependent on the conformation of the molecule, although the conformation used
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in the calculation is thought to be of lowest energy, thus is deterministic with regard to the topology.
Currently, we are using AM1-BCC ELF10 methods to calculate partial charges that could be seen
as independent of conformation. Apart from charges, such calculations could also yield per-bond
(per-edge), and per-molecule (per-graph) features, namely partial bond orders such as Wiberg bond
order and formation energy. We plan to continue this study by carrying out experiments to predict
these features independently, jointly as multitask learning, and predicting some with others given.
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