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Abstract

Modeling fluid turbulence and explaining its associated spatio-temporal phenomena
are notoriously difficult tasks. Navier-Stokes (NS) equations describe all the details
of the fluid motions, but require accounting for unfeasibly many degrees of freedom
in the regime of developed turbulence. Model reduction is a general methodology
aiming to circumvent the curse of dimensionality. Originally driven by phenomeno-
logical considerations, multiple attempts to model-reduce NS equations got a new
boost recently with development of Neural Networks (NNs), especially of the
Deep Learning (DL) type, trained on the ground truth data, e.g. extracted from
high-fidelity Direct Numerical Simulations (DNS). However, early attempts of
building NNs to model turbulence has also revealed its lack of interpretability as
the most significant shortcoming. In this paper we address the key challenge of
devising reduced but, at least partially, interpretable model. We take advantage
of the balance between strong mathematical foundations and the physical inter-
pretability of wavelet theory to build a spatio-temporally reduced dynamical map
which fuses wavelet based spatial decomposition with spatio-temporal modeling
based on Convolutional Long Short Term Memory (C-LSTM) architecture. It is
shown that the wavelet-based NN makes progress in scaling to large flows, by
reducing computational costs and GPU memory requirements.

1 Challenge of Learning Spatio-temporal Physics

Multitude of research problems in physical and natural sciences are exceptionally complex to study
and model with existing analysis tools because of their high-dimensionality, with thousands-to-
millions degrees of freedom exhibiting spatio-temporal dynamics, non-linearity and chaos. One
of the most pertinent problems combining all these factors is fluid turbulence, with applications
to climate, earth sciences, engineering, biomedical and energy sciences. In an era where vast
quantities of turbulence data are generated for studying these applications, building practically usable,
physics-driven reduced order models becomes extremely challenging and important.

Recent surge in devising NN-based reduced models of turbulence [1, 2, 3] including significant efforts
from the computer graphics community [4, 5, 6, 7] for flow visualization by applying powerful, but
application-agnostic Deep Learning (DL) techniques, such as Generative Adversarial Networks [8]
and Convolutional LSTM (C-LSTM) Networks [9] has provided valuable tools boosting research
in this important field of physics. However, majority of approaches used in this emerging field are
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Figure 1: Wavelet-3D-C-LSTM: A schematic

limited to analysis based on two dimensional spatial projections of the originally 3+1 dimension
(three-dimensional space and another dimension in time) spatio-temporal data-sets. Some of the
state-of-the art spatio-temporal NN modeling architectures, like C-LSTM, have significant memory
costs thus resulting in a limited utility to practical, e.g. climate and geophysical, datasets. Our main
focus in this paper is on making C-LSTM tractable for large scientific spatio-temporal datasets.

2 Existing Strategy: Autoencoder 3D Convolutional LSTM

An approach to building reduced modeling of massive 3D spatio-temporal turbulence datasets is
described in [10]. The main spatio-temporal modeling block, 3D-C-LSTM, was implemented in
[10] through 3D extension of the 2D C-LSTM, originally proposed in [9]. To reduce dimensionality,
spatial compression and decompression steps were implemented via autoencoders, sandwiched by 3D-
C-LSTM layers. A sequence of 50 temporal snapshots, each of size 1283 with 3 velocity components,
was used. This imposed a significant training cost, and the solution relied on convolutional auto-
encoders to compress/decompress data before/after the 3D-C-LSTM block. The approach has helped
to compress by factor of 125, down to 153 × 15 numbers. Knowledge of physics was utilized
in Ref [10] postfactum – only to evaluate prediction quality. However, this generally successful
autoencoder-based approach had two important shortcomings. First, we do not have explicit control
on the features to retain in the latent space and therefore some important features may be lost.
Second, autoencoders are computationally expensive for even moderate in size datasets. This
manuscript suggests to resolve these complications by replacing the autoencoder NNs with explicit
and physics-based model reduction guided by wavelets. Wavelets provide additional benefits of
strong mathematical foundations through the wavelet selection (e.g. resulting in numerical stability)
and significant reduction of the underlying computational cost.

3 Proposed Solution: Wavelet-3D-C-LSTM

In this manuscript we propose a new NN scheme, coined Wavelet-CLSTM, to simultaneously ad-
dress the twin challenges of reducing the computational cost and injecting physics-based features
into the procedure. The key idea of our Wavelet-CLSTM scheme consists in decomposing the 3+1
dimensional training data set with the wavelet transform, which results in a compact representation
though the wavelet coefficients. The approach is superior to the previously used (auto-encoder based
compression/decompression) methodology because it represents turbulence data in a compact, mathe-
matically accurate, robust and flexible way. Moreover, we capitalize on the fact, well documented
in the literature [11, 12, 13, 14, 15, 16, 17], that the wavelet coefficients capture multi-scale physics
embedded in the turbulence dataset in one of the most efficient compressed formats. For example, a 3
level wavelet decomposition of a volumetric dataset of size 1283 produces 512 coefficients of size 163.
This reduction in dimensionality is critical for saving memory and improving practical applicability
of powerful, but expensive, architectures like C-LSTM. Additionally, a full wavelet decomposition
can be used to perfectly reconstruct the original dataset i.e it is non-lossy if all coefficients are
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considered. However, for reduced order modeling of practical datasets, we choose fewer coefficients
to achieve maximal compression. This is an important choice to be made prior to training called
wavelet thresholding, where the coefficients with the highest L2 norm are chosen for training - this
cutoff number is determined by % of “energy" captured by the coefficients. A 3% thresholding
would indicate 3/100 × 512 ≈ 15 coefficients with the highest L2 norm. When compared with
autoencoders, wavelets are advantageous because:

• Wavelet coefficients have a dimensionality orders of magnitude lower than the original
training data, and low dimensional coefficients of a desired size can be computed for
extremely large datasets [16, 18, 19]. This decouples training for each wavelet coefficient
from other coefficients, thereby avoiding communication overheads and memory limitations
which otherwise would plague large, distributed, parallel training tasks.
• Wavelet transform (decomposition) and inverse wavelet transform (reconstruction) can be

computed analytically, making it orders of magnitude cheaper and faster.
• An additional benefit of the analytical formulation translates into ability to extend threshold-

ing, i.e. the scales to be modeled can be explicitly selected a priori to training. (This is to
be contrasted to the convolutional autoencoder handicap which lacked direct control, apart
from selection of kernel size [10] during training.)

Our a priori analysis of the 3% thresholding shows that it captures all the large scales, and a majority
of the intermediate scales in turbulence, however excluding sufficiently small scales. This is an
acceptable trade-off, since large and intermediate scales are typical quantities of interest in majority of
practical applications [20, 21, 22]. We would like to emphasize, however, that including smaller scales
by increasing the thresholding percentage, is a degree of freedom to decide based on the application
requirements. Increasing thresholding percentage increases the total training duration; but the
adaptive, local nature of the coefficients ensures that the memory cost of training per coefficient stays
constant, such that various coefficients can be trained separately, on available computer resources.
This remarkable feature of the wavelet decomposition makes large scale parallelism a choice - rather
than a necessity - thereby opening up this technique to extremely large datasets even with moderate
computer resources available. To further increase compression efficiency we plan to investigate in
the future scale based thresholding (i.e. different thresholds at different scales) as well as integer
quantization (or re-quantization) to reduce the number of bits needed to represent the coefficients. A
Schematic outlining this methodology is illustrated in Fig. 1.

4 Dataset and Accuracy Metrics

(a) Instantaneous turbulent kinetic
energy

(b) Reynolds number (based on
Taylor microscale) (c) Individual velocity variances

Figure 2: Representative Statistics of the Simulation

The dataset is a 3D Direct Numerical Simulation (DNS) of homogeneous, isotropic turbulence
(HIT), in a box of size 1283. The simulation is performed using massively parallel CFDNS, by
solving the incompressible Navier Stokes equations with a low band forcing restricted to small
wavenumbers k < 1.5, using the classical pseudo-spectral approach. A combination of phase-shifting
and truncation is used to achieve a maximum resolved wavenumber of kmax =

√
2/3× 128 ∼ 60.

Spectral resolution used is ηkmax ∼ 1.5, i.e. the grid spacing, ∆x, is comparable to the Kolmogorov
scale η. Details can be found in Ref. [23]. In this work we focus on modeling the 3 velocity
components. For illustration, Figure 2a shows the turbulent kinetic energy at a time instant. Figure 2b
shows the variation in the Taylor-microscale based Reynolds number with the eddy turnover time,
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which characterizes the large turbulence scales. Finally, the variances in all 3 velocity components
are shown in Fig. 2c.

We now briefly describe 3 basic tests of 3D turbulence which are used as “diagnostic" metrics for the
accuracy of the flow predicted by the trained model.

4.1 4/5 Kolmogorov law and the Energy Spectra

The main statement of the Kolmogorov theory of turbulence is that asymptotically in the inertial
range, i.e. at L� r � η, where L is the largest, so-called energy-containing scale of turbulence and
η is the smallest scale of turbulence, so-called Kolmogorov (viscous) scale, F (r) does not depend
on r. Moreover, the so-called 4/5-law states for the third-order moment of the longitudinal velocity
increment

L� r � η : S
(i,j,k)
3

rirjrk

r3
= −4

5
εr, (1)

where ε = νD
(i,j;i,j)
2 /2 is the kinetic energy dissipation also equal to the energy flux.

Self-similarity hypothesis extended from the third moment to the second moment results in the
expectation that within the inertial range, L� rη, the second moment of velocity increment scales
as, S2(r) ∼ vL(r/L)2/3. This feature is typically tested by plotting the energy spectra of turbulence
(expressed via S2(r)) in the wave vector domain, e.g. as shown in the results section.

4.2 Intermittency of Velocity Gradient

Consequently from Eqn. 1, the estimation of the moments of the velocity gradient results in

Dn ∼
Sn(η)

ηn
. (2)

This relation is strongly affected by intermittency for large values of n (i.e. extreme non-Gaussian
behavior) of turbulence, and is a valuable test of small scale behavior.

4.3 Statistics of coarse-grained velocity gradients: Q−R plane.

Isolines of probability in the Q−R plane, expressing intimate features of the turbulent flow topology,
has a nontrivial shape documented in the literature. See Ref. [24] and references therein. Different
parts of the Q−R plane are associated with different structures of the flow. Thus, lower right corner
(negative Q and R), which has higher probability than other quadrants, corresponds to a pancake
type of structure (two expanding directions, one contracting) with the direction of rotation (vorticity)
aligned with the second eigenvector of the stress. This tear-drop shape of the probability isoline
becomes more prominent with decrease of the coarse-graining scale. Here, we study the Q−R plane
coarse-grained/filtered at different scales, to account for large scale (r = 32), inertial (r = 8), and
small scale (r = 1) behaviors. This allows us to selectively analyze the accuracy of our predictions at
different scales, since we are interested in modeling primarily the large and inertial ranges.

5 Results

The wavelet coefficients are computed with a biorthogonal 1.3 [25] mother wavelet and 3% threshold-
ing which we only have 15 coefficients to train, out of a total of 512. We compare accuracy of the NN
predictions based on the turbulence diagnostics developed and tested in [3, 10]. We predict a sequence
of flow-fields from the trained model, and analyze the flow at τ = 1.5, 3 and 4.5, which correspond
to non-dimensional eddy turnover times. Analyzing the statistical properties of the predicted flow at
varied time instants allows us to assess the long-term stability of our temporal predictions.

First, we analyze relative significance of different HIT scales conducting the energy spectra test.
Higher wave-numbers in Fig 3a correspond to smaller scales. It is clear from the results that the large
scale spectra are matched almost exactly, with good reproduction in the intermediate scale range.
Comparatively, small scale spectra are not reproduced well, which is intentional because a significant
portion of small scales were removed (set to zero) during the thresholding. Effects of the small scale
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(a) Energy Spectra.
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(c) Q-R plane: isolines of the velocity gradient invariants
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Figure 3: Wavelet-CLSTM Neural Network Turbulence vs Physical Simulation (DNS)

absence is also seen in the Probability Distribution Function (PDF) of the velocity gradient (Fig 3b),
which tests solely the smallest scales of HIT. This is expected, since we are building a reduced order
model for applications where large and inertial scales are of primary interest. The third test is the
Q-R plane diagnostic in Fig 3c, which offers an arguably more stringent test of three-dimensional
structure in turbulence [24, 26, 27, 28], as described in the previous section. We observe in Fig. 3c
that the Wavelet-CLSTM reproduces the large scale behavior almost perfectly, while reproduction of
turbulence geometry start to deteriorate as we move down-scales, to intermediate (r = 8) and small
(r = 1) scales. The small scale behavior is not reproduced due to the 3% thresholding favoring large
scales. The symmetric structure seen in the small scale prediction is likely linked to the noise added by
the model. The bottom graphic "Ave" in Fig. 3c shows the averaged diagnostics for the 3 time instants.
Overall, the test results present ample evidence to the fact that due to the physically-interpretable
selection of the wavelet basis, the Wavelet-CLSTM is capable of modeling the large and inertial
scale spatio-temporal dynamics of HIT well. We point out that it is straightforward to include small
scale behavior by including relevant wavelet coefficients, obviously on the expense of increase in the
computational cost.

6 Conclusion

We present here the first results for the novel Wavelet-CLSTM, which is an efficient, scalable,
high dimensional deep NN framework for reduced modeling of turbulence, and similar or related
multi-scale physical phenomena. The key strength of the framework is in the combination of a
well-developed and mathematically justified wavelet decomposition with its highly desirable physical
model reduction and interpretation power. Further investigation is desired into intelligent thresholding
methods for non-stationary spatio-temporal phenomena.
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