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Abstract

Bio-oil molecule assessment is essential for the sustainable development of chemi-
cals and transportation fuels. These oxygenated molecules have adequate carbon,
hydrogen, and oxygen atoms that can be used for developing new value-added
molecules (chemicals or transportation fuels). One motivation for our study stems
from the fact that a liquid phase upgrading using mineral acid is a cost-effective
chemical transformation. In this chemical upgrading process, adding a proton
to an oxygen atom is a central step. The protonation energies of oxygen atoms
in a molecule determine the thermodynamic feasibility of the reaction and likely
chemical reaction pathway. A quantum chemical model based on coupled cluster
theory is used to compute accurate thermochemical properties such as the protona-
tion energies of oxygen atoms and the feasibility of protonation-based chemical
transformations. However, this method is too computationally expensive to explore
a large space of chemical transformations. We develop a graph neural network
approach for predicting protonation energies of oxygen atoms of hundreds of
bioxygenate molecules to predict the feasibility of aqueous acidic reactions. Our
approach relies on an iterative local nonlinear embedding that gradually leads to
global influence of distant atoms and an output layer that predicts the protonation
energy. Our approach is geared to site-specific predictions for individual oxygen
atoms of a molecule in comparison with commonly used graph convolutional net-
works that focus on a singular molecular property prediction. We demonstrate that
our approach is effective in learning the location and magnitudes of protonation
energies of oxygenated molecules.

1 Introduction

Bio-oils, obtained from biomass such as wood and biowaste, play a critical role in producing new
sustainable chemicals and fuels. Oxygenated molecules are derivatives of bio-oils with carbon, hy-
drogen, and oxygen atoms. Development of new value-added molecules (chemicals or transportation
fuels) from naturally abundant oxygenates requires complex chemical transformations. Reactions
using water in a mineral acid medium are cost and energy efficient for chemical transformations.
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The simplest step of acid medium reaction in water is protonation, where a proton from the mineral
acid is absorbed on an electronegative part of the molecule, often the oxygen site. The protonation
reaction of a hydroxyl group (OH) often leads to a dehydration reaction, which is a dominant reaction
step in biomass conversion reactions. Moreover, the thermodynamic and kinetic feasibility of the
dehydration reaction can be predicted with the understanding of the protonation energy. Accurate
estimates of the feasibility of proton-catalyzed reaction in aqueous media of possible intermediates
are extremely costly and difficult, however. The state-of-the-art approach for protonation energy
calculation is based on quantum chemical models. For example, G4MP2 [1,2], a model based on
coupled cluster theory, is predicted to be accurate up to ~1 kcal/mol for atomization energy compared
with gas phase experiments. A disadvantage of G4MP?2 is that it is computationally expensive. For
example, a molecule with 15 heavy atoms may require 48 hours on a moderately sized cluster with
hundreds of modern CPU nodes. For molecules with more than 15 heavy atoms, performing accurate
quantum chemical computations is impossible. To that end, we develop a graph neural network
approach that learns from the high-fidelity G4MP?2 bio-oil database and predicts protonation energies
of oxygenates.

2 Graph neural network for site-specific protonation energy prediction

Here we describe our graph convolutional neural network (GCN) for site-specific protonation en-
ergy predictions. Our supervised learning approach requires training examples of arbitrarily sized
molecular graphs with input and output features defined on each atom. Consequently, this learning
necessitates predictions at each atom and correspondingly requires the specification of a modified
regression approach for site-specific accuracy. Our approach is different from many deployments
of GCNs, which are generally tasked with the prediction of a global property for the molecular
graph. For an early example, in [3] a GCN embedding strategy was used to encode molecules into
fixed-length fingerprint vectors. These vectors could then be mapped to molecular properties. The
study in [4] was similar: a GCN was used to map from a crystalline graph to its material properties.
In [5] a molecular graph approach was proposed in which atomic, bond, and global state information
was used to obtain a map to respective targets. The global state could represent some property
such as reaction temperature affecting a transformation from inputs to targets. In the absence of
global state information, however, and lacking the ability to deal with arbitrary molecular sizes, this
approach is unsuitable for our task. In [6], GCNs were used to find reaction centers between pairs of
arbitrary-sized molecules using a process of attention. Since this addressed our need for handling
arbitrary-shaped inputs, a similar embedding procedure was utilized before converting this problem
to our regression task.

The inputs and response values for the regression task are outlined in Table[I] In addition to atomic
properties, we encode bond features and connectivity information for appropriate information of
an atomic neighborhood. Our targets are given by protonation energies at oxygen atoms and zero
magnitudes at other locations. Our raw data containing structural information is available in xyz
format (i.e., atomic numbers and their positions in 3D space). Each xyz representation for a molecule
is pipelined through RDKit, an open-source cheminformatics software, for encoding molecular
descriptors.

Our GCN approach is based on [6,7] and is also similar to the message-passing neural networks in
[8]. We note that the input features are all molecule specific and that their dimensions scale with
the total number of atoms. To that end, we utilize a linear embedding into a uniform space through
a matrix multiplication. This matrix is arbitrarily sized for each molecule and is initialized with a
random-normal initialization. This arbitrary nature of embedding also implies that the elements of
this matrix remain “nontrainable” during the learning process. The result of the initial encoding leads
to a data sample that has the same dimensions for the features at each atom across our collected
dataset. We denote this initial encoding as

h) = W'a,, (1
where a,, € R™/ are N input features (both atomic and bond) for an atom v and W € RNe*Ns jg

the nontrainable weight matrix that maps to the initial encoding h € R¥s. Following this linear
encoding of the input features at each atom, an iterative nonlinear embedding is performed for



Atomic Feature Possibilities Representation
Element H, C, O, Unknown One-hot
Degree 0,1,2,3,4,5 One-hot
Explicit valence 1,2,3,4,5,6 One-hot
Implicit valence 0,1,2,3.4,5 One-hot
Aromatic 0,1 Bool
Number of neighbors - Integer
List of neighbors All atoms One-hot
Bond Feature Possibilities Representation
Bond type Single, double, triple One-hot
Aromatic 0,1 Bool
Conjugated 0,1 Bool
In ring 0,1 Bool
Connecting atoms All atoms One-hot
Response value Possibilities Representation
Protonation energy - Real valued

Table 1: List of atom-specific input and output of our graph neural network.

incorporating neighboring influences as follows:

hl =o [Uhl '+ U, Y o(VH) |, 2)
u€N (v)

where | € R! indicates a particular layer of the network; o : RMe — R¥e is a nonlinear activation
function; U, Uy, V € RNexNe are trainable linear operations (i.e., weights and biases) shared
between layers; and N (v) stands for the neighborhood of atoms near v that refers to a particular atom.
This iterative embedding leads to the gradual influence of global information at a particular atom v
with increasing [. Following a comprehensive globally nonlinear encoding, a final output encoding
is determined for ensuring comparison with protonation data at each atom (after a sufficient depth
l = L) given by

hl =Ufh) ' +UF Y o (VR 3)

u€N (v)

where UlL, U%, VI e RXNe represent learnable parameters for leading to a one-output prediction
at each atom given by h% € R

The output features (i.e., the predictions) given by h’ are assessed against targets given by tZ € R,
For optimizing the trainable operations (i.e., Uy, U, V, UL UL and V1), a loss function for each
data sample j is specified by

Ny
2
Fy=> X (hf —tF)", (4)
i=0
where N,, € Z! is the number of atoms in the molecule and ); is a sparsity-promoting multiplier
penalizing errors at nonzero locations given by

1, ift;=0
A=< ! 5
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with a total loss value for a batch given by
1 &
F=— E F; 6
Ny o 77 ©

where N, € Z! is the number of samples in a batch. We note that the primary difference between the
proposed methodology and similar GCN applications is the task of predicting protonation energies
for oxygen atoms at different locations for arbitrary-sized molecules. While iterative nonlinear
embedding (or message passing) is used to transform atomic and bond features with global context,
there is no concatenation at the terminal layers for a singular prediction. Thus, the learning challenge
is increased considerably.



3 Experimental results

The protonation energy of molecular sites was generated from ~ 2, 000 G4MP2 calculations by using
the Gaussian 16 software. This dataset was split into 70% for training the GCN and 30% for testing.
We trained our GCN with the Adam optimizer using a learning rate of le and a learning rate decay
multiplier of 0.9 every 50 batch gradient updates. We ran the training for 2,000 epochs and observed
a sparsity-based root mean square error (RMSE) of 1030.8 across training. We observed that training
and validation losses did not change beyond this range of training for further gradient updates. Our
network hyperparameters were N, = 40, L = 5, N, = 40, A = 100, and ¢ : ReLU.

Figure [T]shows the results for protonation site and energy value prediction for certain large molecules.
The plots show magnitudes predicted by the trained GCN superimposed on the truth in addition
to 3D visualizations of the molecular structures colored by the value of the protonation energies.
We note that these results are for molecules that were a part of the testing dataset (i.e., they are not
used for training). In general, we observe that GCN is able to predict trends in energy magnitudes
appropriately in addition to finding protonation sites accurately. The sparsity-based RMSE of the
testing data was 819.7. We note that the conventional R? metric of the ML prediction on the training
and validation data was approximately 0.8 and 0.7, respectively. Scatter plots of the prediction with
respect to the truth for the framework are shown in Figure[2] Inference speeds of approximately 0.15
seconds per molecule were negligible in comparison with the quantum chemical calculations.
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Figure 1: Performance of the proposed method in protonation energy prediction for large organic
biofuel molecules. The left column contains graphical representations of the molecules with the true
data, and the right column shows results from our method. Note that these molecules are from the
testing dataset.
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Figure 2: Scatter for the protonation predictions with a training and validation R? ~ 0.8 and 0.7,
respectively. This R? metric is affected by the augmented nature of the ML task of classification as
well as regression.

4 Conclusions

The extreme cost of simulating the characteristics of large organic molecules limits the efficient
exploration of trends related to various molecular configurations for various chemistry applications.
In this study, we addressed this limitation of traditional methods by devising a graph neural network
approach to predict properties of large molecules at the atomic level. Our approach learns from the
high-fidelity G4MP2 bio-oil database, and we used the training model to predict the protonation
energies of oxygenates, which are crucial to exploring the large space of chemical transformations
required to develop new value-added molecules from naturally abundant chemical species. The
method outlined here can be utilized for further study of reactivity trends of bio-oil components. Our
overarching goal for this work is to study its coupling with molecular discovery concepts in order to
quickly assess the viability of a sampled configuration for efficient exploration of the vast space of
potential molecules—inaccessible to state-of-the-art methods deployed today.
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