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Abstract

A Global Navigation Satellite System (GNSS) uses a constellation of satellites
around the earth for accurate navigation, timing, and positioning. Natural phe-
nomena like space weather introduce irregularities in the Earth’s ionosphere, dis-
rupting the propagation of the radio signals that GNSS relies upon. Such dis-
ruptions affect both the amplitude and the phase of the propagated waves. No
physics-based model currently exists to predict the time and location of these dis-
ruptions with sufficient accuracy and at relevant scales. In this paper, we focus
on predicting the phase fluctuations of GNSS radio waves, known as phase scin-
tillations. We propose a novel architecture and loss function to predict 1 hour in
advance the magnitude of phase scintillations within a time window of±5 minutes
with state-of-the-art performance.

1 Introduction

A global navigation satellite system (GNSS) is a constellation of satellites around the Earth used
for accurate navigation, timing and positioning. GNSS refers to a large category of commercial
products like the Global Positioning System (GPS). As a society, we are becoming increasingly
dependent on GNSS technology, with a recent study estimating losses of $1 billion per day in case
of an extended outage [10]. Therefore it becomes imperative to predict disruptions to GNSS signals
with good spatial and temporal resolution.

GNSS signals are high frequency radio waves that propagate through the ionosphere before they
reach ground-based receivers. The frequency of these signals is of the order of GHz and they there-
fore interact with small scale ionospheric irregularities (i.e. sharp gradients in ion and electron
densities). This causes the signals to exhibit rapid amplitude and phase variations known as scin-
tillations, causing uncertainty in position and loss of lock in severe cases [6]. Interactions between
the sun and the Earth’s ionosphere are extremely non-linear, which makes the prediction of space
weather effects challenging. Because of the complex nature of the problem, a complete theory
of ionospheric irregularities and signal scintillation does not yet exist, which limits the prediction
capabilities of physics-based models [11].
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In this study, we focus on predicting phase scintillations at high latitudes, using data from Global
Positioning System (GPS) receivers in the Canadian High Arctic Ionospheric Network (CHAIN)
obtained between 2015-2017. At high latitudes, the dominant source of ionospheric irregularities
and therefore scintillations is solar-driven storms and substorms (geomagnetically active periods).
One very visible manifestation of these high energy inputs from the sun is the aurora, which has also
been shown to correlate with these scintillations [1] [9].

Phase scintillations are an uncommon yet severe phenomenon. Over the course of 2015-2016, only
0.0091% of the minute basis samples from CHAIN exhibited scintillations over the threshold of 0.1,
which is the value above which the GNSS signal reliability decreases [8]. Therefore, the event task
is sparse, rendering standard techniques incapable of predicting accurately in time and magnitude.
In addition, due to errors in hardware, 22% of data in the years 2015-2017 are missing, further
complicating the prediction task.

We propose a method for predicting scintillations from time-series of physical measurements, in-
corporating two key novelties: (a) we account for the sparsity of scintillations with a custom loss
function; (b) we handle missing data values with binary masks that inform our model which values
are missing. We outperform the current state of the art by making predictions 1 hour in advance with
a total skill score (TSS, discussed below) of 0.64. To the best of our knowledge we are the first to
treat the prediction problem as a regression problem, rather than classifying the existence of phase
scintillations, as per the current state of the art.

1.1 Related Work

There is no physics based model capable of performing accurate predictions of timing and magnitude
of phase scintillations with relevant spatial and temporal scales. Previous data-driven approaches
include [7] where the authors predict scintillations in equatorial latitudes; we note that their results
are not directly comparable to our task, as the physics guiding ionospheric scintillations on high
latitudes differ from the equatorial. In [5] the authors characterize the climatology of scintillations
using statistical analysis but do not predict them in the future. The only known predictive model
[8] only classifies the occurrence of scintillations 1 hour in advance. Our work is the first to treat
phase scintillation prediction as a regression problem, and the first to account for event sparsity and
missing data.

2 Methodology

Dataset: We study the high latitude Canadian sector (50◦ − 70◦ geographic latitude) between mid-
October 2015 and end-February 2016. We use solar activity parameters such as solar wind speed
(Vsw), interplanetary magnetic field components such as (IMF Bz, By), F10.7, Sym-H, etc. and
geomagnetic activity indices such as Kp, AE to characterize the global influence of solar activity
on Earth’s magnetosphere and ionosphere [3]. For local ionospheric state information pertaining
to the high latitude Canadian sector, we are using the CARISMA (Canadian Array for Realtime
Investigations of Magnetic Activity) magnetometer dataset, the Canadian High Arctic Ionospheric
Network for ionospheric total electron content (TEC) and scintillation index measurements. In
summary, we have 39 features in a minute-cadence dataset. We use the first 75000 points (until
mid-January) as our training data, while we reserve the latter 75000 points as our test set.

Masking: Due to measurement errors, faulty equipment and other natural phenomena, 22% of the
data are corrupted and logged as NaN. For each feature, we substitute any NaN values with the mean
value of that feature across all non-NaN observations. We indicate such substitutions with a binary
(1/0) mask, which is provided as an additional feature. Including a mask for each feature therefore
doubles the total number of features. This approach resembles that of [2], except that we do not
decay the substituted value towards the mean as the vast majority of our observations exhibit small
variation from the mean.

Sparsity and Loss Function: As discussed above, phase scintillations are a rare phenomenon.
Given the extreme sparsity of our positive phase scintillation values, standard regression loss func-
tions would find their minimum by predicting values around the mean, and failing to predict high
phase scintillation events. We introduce a custom loss function defined in eq.(1). The loss function
has two components: (i) the Mean Absolute error (MAE) between the predicted output and ground
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Figure 1: Proposed convolutional architecture. Input timeseries is passed through the convolutional
layers and a single output neuron produces the prediction. k: is the size of the convolutional kernel,
while the following number corresponds to the filters

truth; (ii) a dynamic range penalty that incentivizes the range of the output sequence to match the
range of the true sequence. With both components, the model is encouraged to match both the mean
and variance of the true sequence. In the following expression for the loss L, the sum, max and min
are computed over a batch X,Y of predictions and ground truth respectively:

L =

∑
i ‖yi − xi‖
N

+ λ (DynRange(Y )− DynRange(X)) (1)

DynRange(X) = max(X)−min(X) (2)

In our experiments we found that setting λ = 0.1 provided the best performance.

Architecture: Figure 1 shows the proposed architecture. In addition to the time-series data for time
twe also include observations from t−120 min to tmin to inform the model of the historical changes
in the values. Thus, the dimensionality of our input is History × Features; in our case 120× 40.
We condition our model to predict 1 hour in advance. We note that filter sizes decrease and then
slightly increase in order to create a small bottleneck in feature space such that noisy information
is excluded from the final layers. The aforementioned mask is appended to our input as an extra
channel.

3 Results

Figure 2 shows our results over the whole testing dataset of 75000 minute samples, as well as a
zoomed version over 5000 minute samples. The test time-points do not overlap with the training
time-points. It is evident that the prediction follows closely the ground truth but fails to accurately
predict the magnitude of high intensity phase scintillations. Fig 2(b) shows that despite the mismatch
in absolute magnitude, our model successfully predicts a phase scintillation larger than the mean.
We also note a small delay in the order of 2-3 minutes in our predictions. Fig 2(a) shows that the
predicted sequence has the same peak behaviour as the ground truth. Fig.3 shows the predictions
over the whole test set to make the predicted time series more clear without the scaling of Fig. 2.

For ease of comparison against existing techniques such as [8], which approached the prediction
task as one of classification, we quantitatively assess the performance of our model by first casting
it as a binary classification task and then applying two classification metrics. To cast as binary
classification, we say that a scintillation occurs if a threshold of 0.1 in the scintillation index is
exceeded (this choice of threshold follows that chosen in [5]). The metrics we use to assess this are
the total skill score (TSS) as defined in [8] and eq. 3, and the Heidke skill score as discussed in [4].
The Heidke skill score takes values in (− inf, 1], and the TSS takes values in [−1, 1]. In both cases, a
score of 0 means no predictive capability. Our model scores 0.34 on the Heidke skill score, showing
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Figure 2: (a) Results over 75000 minute interval (b) Results zoomed in a 5000 min interval

Figure 3: Predictions over 75000 points of test set; Note that predicted sequence exhibits same peak
behaviour as ground truth.

some predictive ability. The model of [8] performed classification with a TSS of 0.49, while our
model achieves a TSS of 0.64, outperforming the current state of the art.

TSS =
TP

(TP + FN)
− FP

(FP + TN)
(3)

4 Conclusions

GNSS products like GPS are vital to modern day operations; from navigation to high-frequency
trading in the stock markets — all of which can be disrupted by scintillations in the signals. In
this paper we proposed a novel methodology for predicting GNSS phase scintillations 1 hour in
advance. We introduced a custom loss function and a method of dealing with missing and incomplete
data. We further improved the current state of the art by 0.15 in skill score and demonstrated our
method’s predictive capability. We believe that additional data sources driven by the same physical
phenomena, like auroral images, can further improve the skill score.

This project was conducted during the 2019 NASA Frontier Development Lab (FDL) program, a
public-private partnership between NASA, the SETI Institute, and commercial partners. We wish to
thank, in particular, NASA, Google, Intel, ElementAI and SRI, for supporting this project.
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