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Abstract

Variational autoencoders (VAEs) defined over SMILES string (simplified molecular-
input line-entry system) and graph-based representations of molecules promise
to improve the optimization of molecular properties, thereby revolutionizing the
pharmaceuticals and materials industries. However, these VAEs are hindered by
the non-unique nature of SMILES strings. To efficiently pass messages along
all paths through the molecular graph, we encode multiple SMILES strings of a
single molecule using a set of stacked recurrent neural networks, pooling hidden
representations of each atom between SMILES representations, and use attentional
pooling to build a final fixed-length latent representation. By then decoding to a
disjoint set of SMILES strings of the molecule, our All SMILES VAE learns an
almost bijective mapping between molecules and latent representations near the
high-probability-mass subspace of the prior. Our SMILES-derived but molecule-
based latent representations significantly surpass the state-of-the-art in a variety of
fully- and semi-supervised property regression and molecular property optimization
tasks.

1 Introduction

The design of new pharmaceuticals, OLED materials, and photovoltaics all require optimization
within the space of molecules [1]. While well-known algorithms such as gradient descent facilitate
efficient optimization, they generally assume a continuous search space. In contrast, molecules
correspond to graphs, with each node labeled by one of ninety-eight naturally occurring atoms, and
each edge labeled as a single, double, or triple bond. Moreover, properties of interest are often
sensitive to even small changes to the molecule [2], so their optimization is intrinsically difficult.

To solve this problem, previous works have trained a variational autoencoder (VAE) [3, 4] on SMILES
string representations of molecules [5] to learn a decoder mapping from a Gaussian prior to the space
of SMILES strings [6]. A sparse Gaussian process on molecular properties then facilitates Bayesian
optimization of molecular properties within the latent space [6–9], or a neural network regressor
from the latent space to molecular properties can be used to perform gradient descent on molecular
properties with respect to the latent space [10–13].

SMILES, the simplified molecular-input line-entry system, defines a character string representation of
a molecule by performing a depth-first pre-order traversal of a spanning tree of the molecular graph,
emitting characters for each atom, bond, tree-traversal decision, and broken cycle [5]. The resulting
character string corresponds to a flattening of a spanning tree of the molecular graph, as shown in
Figure 1. The SMILES grammar is restrictive, and most strings over the appropriate character set
do not correspond to well-defined molecules. Every molecule is represented by many well-formed
SMILES strings, corresponding to all depth-first traversals of every spanning tree of the molecular
graph. The distance between different SMILES strings of the same molecule can be much greater
than that between SMILES strings from radically dissimilar molecules [11]. To address this difficulty,
sequence-to-sequence transcoders [14] have been trained to map between different SMILES strings
of a single molecule [15–17].
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Figure 1: The molecular graph of the amino acid Tryptophan (a). To construct a SMILES string, all
cycles are broken, forming a spanning tree (b); a depth-first traversal is selected (c); and this traversal
is flattened (d). The beginning and end of intermediate branches in the traversal are denoted by ( and )
respective. The ends of broken cycles are indicated with matching digits. A small set of SMILES
strings can cover all paths through a molecule (e).

We introduce the All SMILES VAE, which uses recurrent neural networks (RNNs) and atom-based
pooling on multiple SMILES strings to implicitly perform efficient message passing along and
amongst many flattened spanning trees of the molecular graph in parallel.

2 All SMILES variational autoencoder

A variational autoencoder (VAE) defines a generative model over an observed space x in terms of
a prior distribution over a latent space p(z) and a conditional likelihood of observed states given
the latent configuration p(x|z) [3, 4]. The true log-likelihood log p(x) = log

∫
z
p(z)p(x|z), also

known as the log-evidence in the Bayesian statistics literature, is intractable. The evidence lower
bound (ELBO), based upon a variational approximation q(z|x) to the posterior distribution, is
maximized instead: L = Eq(z|x) [log p(x|z)] − KL [q(z|x)||p(z)] . The ELBO implicitly defines a
stochastic autoencoder, where the approximating posterior q(z|x) is the encoder and the conditional
likelihood p(x|z) is the decoder.

After the initial embedding, each layer of the All SMILES encoder takes representations of multiple
distinct SMILES strings of the same molecule as input, and applies RNNs to them in parallel
(specifically, gated recurrent units (GRUs) [18]), followed by atom-based harmonization and layer
normalization, as shown in Figure 2. The RNNs implicitly realize a representative set of message
passing pathways through the molecular graph, corresponding to the depth-first pre-order traversals
of the spanning trees underlying the SMILES strings (Figure 1). To induce information flow amongst
the union of the implicit SMILES pathways, for each atom, the atom harmonization step replaces the
hidden representations from disparate SMILES strings with a pooled representation of that atom, as
in Figure 6. The representations of the syntactical characters are unchanged by this harmonization.
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Figure 2: In each layer of the encoder after the initial BiGRU and linear transformation, hidden states
corresponding to each atom are pooled across encodings of different SMILES strings for a common
molecule, followed by layer norm and a GRU on each SMILES encoding independently.

The approximating posterior distills the resulting variable-length encodings into a fixed-length
hierarchy of autoregressive Gaussian distributions [19]. The mean and log-variance of the first layer
of the approximating posterior, z1, is parametrized by max-pooling the terminal hidden states of
the final encoder GRUs, followed by batch renormalization [20] and a linear transformation, as
shown in Figure 3. Succeeding hierarchical layers use Bahdanau-style attention [21]. The prior has a
similar autoregressive structure, but uses fully connected layers of ReLUs in place of Bahdanau-style
attention.
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Figure 3: The approximating posterior is an autoregressive set of Gaussian distributions. The mean (µ)
and log-variance (log σ2) of the first subset of latent variables z1 is a linear transformation of the
max-pooled final hidden state of GRUs fed the encoder outputs. Succeeding subsets zi are produced
via Bahdanau-style attention with the pooled atom outputs of the GRUs as keys (k), and the query (q)
computed by a neural network on z<i.

The decoder is a single-layer LSTM, for which the initial cell state is computed from the latent repre-
sentation by a neural network, and a linear transformation of the latent representation is concatenated
onto each input. It is trained with teacher forcing to reconstruct a set of SMILES strings disjoint from
those provided to the encoder, but representing the same molecule.

Rather than apply a sparse Gaussian process to fixed latent representations to predict molecular
properties [7–9, 11], the All SMILES VAE jointly trains property regressors with the generative
model [6, 12]. We use linear regressors for the log octanol-water partition coefficient (logP) and
molecular weight (MW), which have unbounded values; and logistic regressors for the quantitative
estimate of drug-likeness (QED) [22] and twelve binary measures of toxicity [23, 24], which take
values in [0, 1]. We then perform gradient-based optimization of the property of interest with respect
to the latent space, and decode the result to produce an optimized molecule. We constrain optimization
to the reparametrized n− 1 dimensional sphere of radius

√
n− 1 for each n-dimensional layer of

the hierarchical prior by optimizing the angle directly, since almost all of the probability mass of a
Gaussian distribution lies in this thin spherical shell [25, Gaussian Annulus Theorem].

3 Results

We evaluate the All SMILES VAE on standard 250,000 and 310,000 element subsets [6, 26] of the
ZINC database of small organic molecules [27, 28]. We also evaluate on the Tox21 dataset [23, 24] in
the DeepChem package [29], with binarized binding affinities of 7831 compounds against 12 proteins.

Using the approximating posterior as the encoder, but always selecting the mean of each condi-
tional Gaussian distribution, and using beam search over the conditional likelihood as the decoder,
87.4% ± 1% of a held-out test set of ZINC250k (80/10/10 train/val/test split) is reconstructed ac-
curately. With the same beam search decoder, 98.5% ± 0.1% of samples from the prior decode to
valid SMILES strings. All molecules decoded from a set of 50,000 independent samples from the
prior were unique, 99.958% were novel relative to the training dataset, and their average synthetic
accessibility score [30] was 2.97± 0.01, compared to 3.05 in the ZINC250k dataset used for training.

As Figure 4 demonstrates, we significantly improve the state-of-the-art in the semi-supervised
prediction of simple molecular properties, including the log octanol-water partition coefficient (logP),
molecular weight (MW), and quantitative estimate of drug-likeness (QED) [22]. We achieve a
similar improvement in fully supervised property prediction, as shown in Table 2. We also surpass
the state-of-the-art in toxicity prediction on the Tox21 dataset [23, 24], obtaining an AUC-ROC of
0.875 ± 0.0008, as shown in Table 2. We refrain from ensembling our model, or engineering features
using expert chemistry knowledge, as in the previous state-of-the-art method achieving an AUC-ROC
of 0.862 [31].

Accurate property prediction only facilitates effective optimization if the true property value is smooth
with respect to the latent space. In Figure 5a, we plot the true (not predicted) logP over a densely
sampled 2D slice of the latent space, where the y axis is aligned with the logP linear regressor.

We maximize the output of our linear and logistic property regressors, plus a log-prior regularizer,
with respect to the latent space, subject to a hierarchical radius constraint. After optimizing in the
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Figure 4: Semi-supervised mean absolute error (MAE) ± the standard deviation across ten replicates
for the log octanol-water partition coefficient (a), molecular weight (b), and the quantitative estimate
drug-likeness [22] (c) on the ZINC310k dataset. Plots are log-log; the All SMILES MAE is a fraction
of that of the SSVAE [26] and graph convolutions [32]. Semi-supervised VAE (SSVAE) and graph
convolution results are those reported by Kang et al. [26].

(a) True logP over a 2D slice of latent space (b) Predicted and true logP over optimization

Figure 5: Dense decodings of true logP along a local 2D sheet in latent space, with the y axis aligned
with the regressor (a), and predicted and true penalized logP across steps of optimization (b).

latent space with ADAM [33], we project back to a SMILES representation of a molecule with the
decoder. Following prior work, we optimize QED and normalized logP penalized by the synthetic
accessibility score and the number of large rings [7–9, 11, 34, 35]. Figure 5b depicts the predicted
and true logP over an optimization trajectory, while Table 1 compares the top three values found
amongst 100 such trajectories to the previous state-of-the-art.1 The molecules realizing these property
values are shown in Figure 7 of the Supplementary materials.

Table 1: Properties of the top three optimized molecules trained on ZINC250k.
MODEL PENALIZED LOGP

JT-VAE [11] 5.30, 4.93, 4.49
GCPN [34] 7.98, 7.85, 7.80
MOLDQN [35] 8.93, 8.93, 8.91
ALL SMILES 12.31, 12.13, 12.01
All SMILES (KL unscaled) 29.80, 29.76, 29.11

MODEL QED

JT-VAE [11] 0.925, 0.911, 0.910
CGVAE [12] 0.938, 0.931, 0.880
GCPN [34] 0.948, 0.947, 0.946
MolDQN [35] 0.948, 0.948, 0.948
All SMILES 0.948, 0.948, 0.948

1Zhou et al. [35] appear to report unnormalized penalized logP values: 11.84, 11.84, 11.82. In Table 1,
we recompute normalized values for their best molecules. Recently, Winter et al. [17] reported molecules
with penalized logP as large as 26.1, but train on an enormous, non-standard dataset of 72 million compounds
aggregated from the ZINC15 and PubChem databases.
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A Supplementary figures
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Figure 6: To pass information between distinct paths implicit in multiple SMILES representations of
a molecule, the encoder pools the representation of each atom across multiple SMILES strings.

Table 2: Fully supervised regression on ZINC250k (a), evaluated using the mean absolute error; and
Tox21 (b), evaluated with the area under the receiver operating characteristic curve (AUC-ROC),
averaged over all 12 toxicity types. Aside from All SMILES, results in (a) are those reported in [6].

(a) ZINC250k

MODEL MAE LOGP MAE QED

ECFP [36] 0.38 0.045
CVAE [6] 0.15 0.054
CVAE ENC [6] 0.13 0.037
GRAPHCONV [37] 0.05 0.017
All SMILES 0.005 ± 0.0006 0.0052 ± 0.0001

(b) Tox21

MODEL AUC-ROC

GRAPHCONV [29] 0.829 ± 0.006

LI, CAI, & HE [38] 0.854
POTENTIALNET [39] 0.857 ± 0.006

TOXICBLEND [31] 0.862
All SMILES 0.875 ± 0.0008

(a) Molecules with the top three penalized logP values (b) Molecules with the top three QED values

Figure 7: Molecules produced by gradient-based optimization in the All SMILES VAE.
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