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Abstract

PARAFAC2 is a widely applicable method often used for analyzing multi-way
chromatographic data. We recently proposed a probabilistic framework for
PARAFAC2[1]. The probabilistic formulations allow for a principled way of
determining the number of latent components as well as modeling heteroscedastic
noise. In this work we present a summary of the probabilistic PARAFAC2 models
and their properties by revisiting the previous results of the analyzed data sets in a
concise fashion.

1 Introduction

Multi-way analysis was originally developed within the field of psychometrics [2, 3], and since
been used widely in other fields such as chemometrics [4]. Multi-way analysis appears in many
fields of research including signal processing, neuroimaging, and information retrieval [5, 6]. The
PARAFAC2 model, an extension of the CandeComp/PARAFAC (CP) model [2, 3, 7], was proposed
by [8], has proven very useful for modeling chromatographic data handling variations occuring during
experiments well[9, 10]. We recently proposed a probabilistic framework for the PARAFAC2 model
for which we summarize the high-level details and more concisely present our results here.
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2 Probabilistic PARAFAC2

Using the model formulation as described by [11], the three-way PARAFAC2 model can be written
as,

Xk = ADkF
>P>k +Ek s.t. P>k Pk = I. (1)

Based on this formulation of the PARAFAC2 model we developed two probabilistic PARAFAC2
formulations. The two formulations comes from the fact that in a probabilistic setting the orthogonality
constraint P>k Pk = IM can be interpreted either as i) E[P>k Pk] = IM or ii) E[Pk]>E[Pk] = IM .
These formulations result in the following generative models i) and ii),

ai· ∼ N (0, IM ),fm· ∼ N (0, IM ), ck· ∼ N (0, diag(α−1)), τk ∼Gamma(aτk , bτk)

i) Pk ∼ vMF (0) , ii) Pk ∼MN (0, IJ , IM )

Xk ∼ N (ADkF
>P>k , τ

−1
k IJ)

Using the notation where ai· denotes the ith row of the matrix A, and where α is a vector where
each element defines the length scale of a corresponding component.

Variational Inference Choosing the mean-field approximation for these model formulations lead
to the factorized variational distribution given as q(θ) = q(A)q(C)

∏
m q(fm·)

∏
k q(Pk)q(τk).

The update rules of the parameters for this distribution follow the standard iterative scheme and are
described in detail in [1], as well as the corresponding evidence lower bound (ELBO). Note that
careful attention had to paid to the updates of the F matrix due to intercomponent dependencies,
as well as the updates for the constrained Pk matrix. In the following we outline the details of the
updates of the two different variational distributions of Pk.

Matrix Von Mises-Fisher Loadings The model formulation using i) constrains the expectation
of the inner product of Pk to be orthogonal. This fully conforms to the conventional PARAFAC2
model ensuring that every realization of the loadings are orthogonal. The variational distribution of
Pk has the density, vMF(Pk|BPk

) = κ(J,B>Pk
BPk

)−1exp
(
tr[B>Pk

Pk]
)

which has support only on
the Stiefel manifold. Details on how this was computed this can be found in [1].

Constrained Matrix Normal Loadings The model formluation using ii) constrains the expectation
of the loadings themselves to the orthogonal. This results in a more flexible model than i) as the
realizations of the loadings are no longer constrained to be orthogonal. However, the interpretation
of the orthogonal factor becomes identical to the direct fitting method and also the update rule is in
closed form in a similar manner to the direct fitting solution as shown in [1].

Noise Modeling The probabilistc formulation allow for both modeling homoscedastic noise or
heteroscedastic noise. Either τk can be updated collectively for all k or individually.

Model Selection In the probabilistic framework the scale vector α is used for exploiting automatic
relevance determination [12] by modeling the length scale of each component. Since the abililty
to prune excess components is more of interest than uncertainty estimates on the length scales we
proposed in [1] to use maximum a posteriori estimates instead of a variational estimate.

3 Results

In [1] the proposed models were evaluated on synthetic data and 3 real data sets; an amino acid
fluorescence (AAF) data set and two gas chromatography mass spectrometry (GC-MS) data sets. In
the following we revisit the results of the synthetic data and one of the GC-MS data sets. We refer to
[1] for descriptions of the analyzed data and full details on these experiments as well as the results
left out here.

Model Comparison Conventionally, different PARAFAC2 models have been compared by the
ratio of explained variance and the core consistency diagnostic, respectively denoted R2 and CCD in
[1] and the reminder of this work. These have been used to compare their ability to determine the
correct number of components in relation to the ELBO used for the probabilistic models.
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Synthetic Data The models were fitted to the synthetic data sets in order to investigate the ability
to recover an underlying signal in different noise settings and noise levels, as seen in Figure 2. Also,
a comparison of the different statistics for determining model order on these synthetic data sets can
be seen in Figure 1.
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Figure 1: Model selection criteria given by the conventional PARAFAC2 and probabilistic
PARAFAC2 models with 1 to 8 components on the synthetic data sets. In the legend ∆ indicates a
homoscedastic noise model and Ω indicates a heteroscedastic noise model.
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Figure 2: Noiseless R2 measured on different PARAFAC2 models fitted on synthetic data with
varying levels of homoscedastic ((a),(c)) and heteroscedastic ((b),(d)) added noise. (a) and (b) show
the result for models fitted with the true number of components (4 by design), and (c) and (d) for
models with an overspecified number of components (6 by design) . In the legend ∆ indicates a
homoscedastic noise model and Ω indicates a heteroscedastic noise model.

Real Data We include the results from [1] on the GC-MS data originating from tobacco (GC-MS-
TOBAC). For the different models we see the model selection performance based on the R2, CCD
and ELBO in Figure 3 as well as the resulting elution profiles in Figure 4.

4 Discussion

The probabilistc PARAFAC2 model recently developed and analyzed in [1] shows promising results
for delivering important properties such as the principled approach of performing model selection
through automatic relevance determination and handling varying noise settings and increased noise
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Figure 3: Model selection criteria given by the conventional PARAFAC2 and probabilistic
PARAFAC2 models with 1 to 8 components on GC-MS-TOBAC data set. In the legend ∆ in-
dicates a homoscedastic noise model and Ω indicates a heteroscedastic noise model.

Figure 4: The resulting elution profiles of the GC-MS-TOBAC data given by the different PARAFAC2
models. From top to bottom the models is specified using model 2 to 8 components. The background
heatmap visualizes the correlation between the data reconstruction for each identified component and
the componentwise data reconstruction of the conventional PARAFAC2 model with 3 components
(expert conclusion). Hinton diagrams indicate the relative squared Frobenius norm of the component-
wise data reconstructions to the sum of them all to the left of each plot. In the headers ∆ indicates a
homoscedastic noise model and Ω indicates a heteroscedastic noise model.

levels, although known limitations of variational inference such as encountering local maxima are
still present.
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