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Abstract

The explanations provided by a classification framework on sequential data can pro-
vide insights to improve scientific understanding in different problems of physical
sciences. We propose a model capable of explaining the contribution of individual
image frames in the input sequence to generate a single prediction label for the
sequence. We achieve this without compromising the accuracy. The performance
of our model is demonstrated in a problem involving combustion instability, where
explainability has not been explored before. We use a dataset of a combustion
system comprising hi-speed flame videos and acoustic time series data. The input
sequence of images is encoded using a layer of 2D CNN and 2 layers of stacked
LSTMs. We use a temporal attention mechanism to capture the global temporal
structure. The attention weights learned by the model highlight the significant
image frames that are most relevant for each prediction. We validate the results
from a domain knowledge perspective.

1 Introduction

Explanations provided by a model can help in verifying its performance as it not only generates the
prediction, but also provides insights behind the prediction. This leads to enhanced understanding
beyond the model accuracy. In many physical systems, critical transitions can occur in split seconds
especially for combustion-dependent power generating systems like land-based gas turbine engines,
jet engines for aviation and rocket engines. Detection of these transitions followed by interpreting the
learning of the model can improve understanding of the critical transition which can lead to effective
control of these systems.

Second Workshop on Machine Learning and the Physical Sciences (NeurIPS 2019), Vancouver, Canada.



In a combustion system, early detection of the critical transition is crucial [1]. The flow perturbations
can cause fluctuations in heat release rate and result in the generation of sound waves. A positive
feedback is established if the heat release rate fluctuations are in phase with the fluctuating acoustic
pressure [2]. This happens when the combustion is taking place in a confined environment which can
cause the sound waves to get reflected back and modify the heat release rate. The oscillations can
grow and cause an intense growth of pressure fluctuations with high heat transfer on the combustor
surfaces [3, 4]. The engines can develop large levels of vibration due to these oscillations which
may lead to its structural damage and catastrophic failure resulting in huge revenue loss [5]. To
study combustion instability, full-scale computational-fluid-dynamic (CFD) models, physics-based
modeling, dynamic data-driven application methods have been applied [6, 7, 8, 9, 10, 11]. However,
these approaches may have several restrictions including simplifying assumptions and hindering
effects of combustion noise.

As the field of 3D computer vision is developing, deep sequence modeling tools are becoming a
natural choice for perception problems with sequential structure and these methods need little input
preprocessing and no hand-designed features [12, 13]. The concepts of deep learning have been
applied to various tasks which include extracting meaningful features from the images [14, 15] using
convolutional neural networks (CNN). Application of deep learning in studying combustion instability
has only started recently. Applications include a deep learning-based framework to extract features
from hi-speed flame images [16], a neural-symbolic framework to capture the temporal variation
[17], an end-to-end convolutional selective autoencoder [18], a 3D CNN architecture [19] and an
instability detection framework using a 2D CNN model [20]. However, the previous works have not
concentrated on providing the explanations of the model predictions,

Correlating predictions back to the input data is difficult for deep learning models as these models
have a large number of parameters and have a complex approach to extract and combine features.
Considering only the accuracy of the model ignores the importance of interpretability in a machine
learning model [21]. Most methods cannot provide an answer to why the model predicts a particular
label and which part of the data are influential for a particular prediction [22]. Automatic Relevance
Determination Regression (ARD) [23] explicitly determines the relevance in the data points. Our
approach also explicitly learns and determines the importance of each data sample and uses that
as explanations for the prediction. The explanations provided by our proposed model followed by
validation from domain knowledge may be a significant step towards improving the scientific under-
standing of this problem. Using a temporal attention mechanism, this framework also generalizes
better without compromising on the accuracy. In this paper, we first describe the dataset used and
models proposed, followed by results and discussions with explanations validated using domain
knowledge.

2 Experiments

2.1 Dataset

The experimental setup (Fig. 1) is a vertically-oriented open-ended Rijke tube setup with a stabilized
flame as the heat source. Our dataset consists of hi-speed flame videos and acoustic time series data,
simultaneously recorded for a duration of 12 secs by inducing instability in a combustion system
with the variation of the acoustic length. We choose hi-speed videos corresponding to 5 different
conditions in the laboratory-scale setup from domain knowledge demonstrating low, moderate and
high instability. From the original 5000 frame/sec, we downsample the videos by 5 times (taking
every 5 frames) and perform preprocessing (crop, resize) on the extracted image frames. By adopting
a moving window approach, we split the entire acoustic time series data into consecutive windows of
length 0.1s (100 ms). To classify the dataset into two classes (stable, unstable) we define an instability
measure (IM) using the acoustic time series data. This signal-to-noise ratio is computed using two
frequency ranges from the Fast Fourier Transform (FFT) plot of each time window using the equation
below. The high amplitude zone is mostly in the range of (200 - 500) Hz and to estimate the energy
content of the instability, we compute the sum of amplitudes in this range. The noise is estimated
by taking average of the amplitudes corresponding to the frequency range of (2000 - 5000) Hz as
this range is far away from the (200 - 500) Hz range. Using median as the threshold (1850), the
dataset is split into two classes as shown in Fig. 1. Each IM value represents a time window and the
sequence of images corresponding to that time window is correlated. Therefore, each point in Fig. 1
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Figure 1: Separation of instability values into stable and unstable. Each point/marker in the plot
represents a sequence of input images, and different marker represents the different conditions in the
laboratory-scale setup.

corresponds to a class label of a particular image sequence.

IM =

∑
Amplitudes in the range 200-500 Hz

Mean of the amplitudes in the range 2000-5000 Hz

2.2 Models

Our proposed model preserve both the spatial and temporal structure of the image sequence by
encoding them using 2D-CNN and two stacked layers of LSTMs. The CNN model encodes each
image in the input sequence into a 128-dimensional vector which acts as input for the LSTM layer
on top of that. For neural machine translation, Bahdanau et al.[24] introduced the concept of soft
temporal attention using the attention module fused between the encoder and decoding layers. In
our proposed model, we don’t use a decoder LSTM as we are performing many-to-one classification.
Taking the sequence of hidden states as input, the attention block generates the context vector as
shown in Fig. 2. Our baseline model (with only CNN and LSTMs) has the same structure and
hyper-parameters as our proposed model except that it doesn’t have the attention block. For the
baseline model, the LSTM hidden state of the last timestep acts as input to the fully-connected layer.

3 Results

We present the comparison results of our proposed model and the baseline model (CNN-LSTMs)
using different input sequence lengths in Table 1. Our approach demonstrates better performance
than the CNN-LSTMs model. Taking sequential image frames as input, the model predicts a single
class label for the entire input sequence as shown in Fig. 2. The attention weights highlight the
most relevant images in generating that particular prediction (Fig. 3). From the results of the dataset,
we observe that the model is not focusing only on the first (or last) few frames and some of the
higher weighted images are distributed in the middle as well for some sequences. We validate the
attention weights from domain knowledge perspective. We illustrate our validation approach in Fig. 3.
Considering an image sequence, we divide the corresponding acoustic time series into 25 windowed
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Figure 2: A complete overview of our proposed model. Attention block taking the hidden states of
the 2nd LSTM as input to generate the context vector.

Model Input Sequence Length Training Accuracy(%) Validation Accuracy(%)

Proposed Model 25 98.28 82.29
50 97.08 84.58

CNN-LSTMs 25 88.49 79.79
50 89.37 79.17

Table 1: Results comparison for our proposed model and baseline model (CNN-LSTMs).

time series surrounding each of the 25 timesteps. And from the FFT plot for each time window, we
compute and plot the maximum amplitudes for all the timesteps. We observe that the distribution
of attention weights shows similarity with that of the maximum amplitude (an important method to
study combustion instability) and it shows that the model highlights most of the timesteps when the
combustion system is actually unstable.

4 Conclusion

Explaining the predictions of a model can provide new insights and enhance our understanding of
different problems in physical sciences exhibiting complex dynamics. In this paper, we propose a
model to successfully predict the stable and unstable states of a combustion system. Along with
detection, the model focuses on significant annotations of all the images in a sequence and the
explanations provided by the model are also validated.
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Figure 3: The explanations provided by the proposed framework validated using domain knowledge.
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