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Abstract

We propose a method for de novo molecule design that is free of human- and data-
biases. We used a deep q-network [1] to train an agent to learn how to sequentially
generate a molecule with SELFIES representation [2]. Using SELFIES instead of
SMILES [3] frees the agent from having to learn a specific grammar, as even
completely random SELFIES produce valid molecule. The network is rewarded
according to the output molecule’s value of the partition coefficient, logP, which is
considered as the Drosophila of computational chemistry. After less than an hour of
training on a single GPU, the agent was successfully producing molecules with the
targeted property value. Bias-free design could lead to unrestricted exploration of
the entire chemical space, and exploring regions that humans (and human-generated
data) might have entirely overlooked so far. This property makes our algorithm
directly applicable to other design questions in the physical sciences.

1 Introduction

Exploring the chemical space of compounds is a task that recently gained traction due to an increase
in the amount of data available and to the advances in machine learning and AI. So far, most
approaches [4–11] focus on using the available data to generate new molecules. As no database
can encompass the entirety of the chemical space, while these methods have contributed to great
advancements in chemical compounds generation, they are also biased by the data available to them.

It has already been shown that blind application of machine learning can amplify systemic mistakes
[12]. Because data is limited by our current discoveries, it is restrained and biased by our current
knowledge. In brief, molecule generation that relies on data is limited and biased to a particular area
of the chemical space.

In this paper, we propose a method that does not rely on pre-collected static dataset and is, therefore,
able to explore the chemical space in an unbiased way. Our method uses deep q-network (DQN) [1]
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combined with a representation of molecules called SELFIES [2]. The combination of SELFIES and
reinforcement learning is particularly interesting as SELFIES strings are always valid. The use of
SELFIES instead of SMILES [3] also frees the network from having to learn any grammar. The reward
is calculated according to targeted value property. In our experiment, we rewarded the molecule made
by the agent according to a difference between the partition coefficient, logP, of the molecule and a
targeted value.

2 Previous work

The application of machine learning to molecule generation has been amply researched in the past
couple of years. However, to the best of our knowledge, only Zhou et al [13] proposed a method that
is data-free. They suggested to use DQN to build molecule, although they incorporated chemistry
domain knowledge in their model, which can bias the molecule generation.

We can categorize other previous approaches by the representation they are using: the graph-based
representations [8–10] and the SMILES-based representations [4–7, 11]. Intuitively, it seems more
natural to treat molecules as graphs. However, none of the methods using graphs are able to integrate
the stereochemistry and the chirality within their representation.

Contrarily, SMILES-based approaches are able to encode both stereochemistry and chirality. Nev-
ertheless, generating valid SMILES requires the algorithm to learn the SMILES’ grammar first.
To minimize this problem, Kusner et al proposed to use parse-trees [7]. More recently Krenn et
al [2] proposed a new representation called SELFIES that is able to directly translate into a valid
molecule. Not only this new representation is more robust than the SMILES, but it also improves the
performance of the model since it doesn’t have to learn any grammar.

3 Proposed method

Our method consists of casting the molecule generation process as a Markov decision process
(MDP) [14] in order to use deep reinforcement learning. A Markov decision process is a decision-
making process where an agent sequentially interacts with an environment E . At each time step, the
agent selects an action at and the environment respond by presenting a new state st. Additionally to
this state, the environement also emits a reward rt that quantifies how good the action taken was. The
goal of the agent is to maximize the reward over time.

Q-learning is a value-based method [15]. Instead of directly trying to find the optimal policy π, it
estimates the optimal value function Q∗(s, a) which can be defined as

Q∗π(s, a) = maxπE

[
T∑
k=t

γk−trt|st = s, at = a, π

]
.

Using Bellman equation, and assuming the optimal value Q∗(s′, a′) for the next step is known, we
can rewrite the previous equation as

Q∗π(s, a) = Es′∼E [r + γmaxa′Q∗(s′, a′)|s, a] .

However, it is not possible to directly compute a tabular version of the Q-function due to the size
of the action and states space. Fortunately, Q∗(s, a) can be approximated using a parametrized
value function Q(s, a; θ) where θ refers to the parameters of the model that defines the Q-values.
In DQN [1], a neural network is used to estimate this value function. This network is trained by
minimising the following loss:

Li(θi) = Es,a∼ρ(s,a)[(yi −Q(s, a; θi))
2]

where yi = Es′∼E [r + γmaxa′Q(s′, a′; θi−1)|s, a] and ρ(s, a) is a probability distribution over
sequence of states s and actions s. This loss can be differentiated according to the model parameters
θ hence stochastic gradient descent can be used conveniently to optimize the network.
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To prevent instabilities during the training, Mnih et al. [1] replaced Q(s′, a′; θi−1) by Q(s′, a′; θj)
where θj is only updated to θi every τ iterations.

3.1 Environment

Our environment emits observations consisting of a SELFIES string. At the beginning of an episode,
the observation is initialized to be a single symbol corresponding to a carbon atom [C]. To interact
with the environment, the agent has to provide an index and an action. The index corresponds to the
position where the action will take place in the string. The action can either be to change the selected
symbol to another one or to insert a new symbol at the position indicated by the index.

The environment uses the following SELFIES symbols:

[C], [=C], [#C], [O], [=O], [N], [=N], [#N], [F], [epsilon], [Ring1], [Ring2],
[Branch1_1], [Branch1_2], [Branch1_3], [Branch2_1], [Branch2_2], [Branch2_3]

In total, there are 36 possible actions. An episode is finished after the agent took an arbitrary number
of step, which we set to 64.

3.2 Model

The model architecture corresponds to the encoder of a Transformer [16]. This architecture has now
become mainstream, thus we will omit an exhaustive model description here. Our implementation
uses PyTorch [17] and is largely based on a blog post [18]. The notable difference between the
original model and ours is the size: we used only 2 layers of attention of size 128, with 4 attention
heads and an inner layer of the point-wise feedforward of 256.

The Transformer encoder outputs a representation for each token of the input. During training, a
token of the representation is randomly selected and an additional linear transformation is performed
giving a single output for each action.

3.3 Training

We trained the agent for 1500 episodes on a single GPU with a learning rate of 0.0001. We used
experience replay with a memory large enough to contain the entirety of the training sequence and
an ε-greedy policy with ε decaying exponentially between 1 and 0.001. We sampled batch from the
memory of size 64. The reward discount γ was set to 0.4. We updated the target network every 10
episodes. Training time is notably short and generally falls to about one hour.

3.4 Reward function

The reward is a function of the distance d between the target logP pt and the current logP p. We
used the partition coefficient logP, connected to the solvability of the molecule, as it can be easily
computed for any molecule [19] using RDKit [20]. The reward was given at each time step.

4 Results and discussion

Figure 1 shows that the agent is able to learn how to generate molecules with a particular target of
logP. In this particular example, the target logP was set to 5. Similar results were obtained with
targeted logP values ranging between -5 to 20.

The agent quickly learned to produce plausible structures for molecules as shown on the right of
Figure 1. Moreover, we noticed the generation of rings occurred naturally in the molecule generated,
which is not the case of other approaches [4] that have an additional term in their reward function
accounting rings.

This approach opens up to a large number of possible experiments: we could constraints part of the
substructure and optimize the rest of the structure to reach a particular value of logP. We could also
have the model interacting with a chemist that could choose parts of the index and action to be taken.
By design, the agent and environment are flexible enough to allow that.
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Figure 1: Reward per episode (left) and depiction of some molecules generated (right). The results
are averaged over 5 runs. The line represents the mean value of the runs and the shaded area is the
standard deviation. A Savitzky-Golay filter has been applied to both mean and standard deviation
with a window-length of 7.

5 Conclusion

In this paper, we present a new bias and data-free method that trains an agent to generate molecules
that have specific property value. As we do not use any data, it is not bound to any domain in specific
and can be used for any kind of property that we can compute. Moreover, our method is fast and uses
little computational resources: it produces molecules with targeted property value within an hour
using a single GPU.

To explore an even wider area of the chemical space, one could combine the current algorithm with
curiosity or other intrinsic rewards [21, 22] to encourage the agent to efficiently explore the chemical
space.
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