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Abstract

This work discusses an optimization framework to embed dictionary learning
frameworks with the wave equation as a strategy for incorporating prior scientific
knowledge into a machine learning algorithm. We modify dictionary learning to
study ultrasonic guided wave based defect detection for non-destructive structural
health monitoring systems. Specifically, this work involves altering the popular
K-SVD algorithm for dictionary learning by enforcing prior knowledge about the
ultrasound guided wave problem through a physics-based regularization derived
from the wave equation. We confer it the name “wave-informed K-SVD.” Training
a dictionary on data simulated from a fixed string added with noise using both
K-SVD and wave-informed K-SVD, we show an improved physical consistency
of columns of dictionary matrix with the known modal behavior of different one-
dimensional wave simulations is observed.

1 Introduction

Machine learning methods for analysis of wave data have recently gained prominence in guided
wave structural health monitoring (SHM) systems. Though still in a nascent stage, the uncertainties
involved in modeling waves propagation inspire usage of machine learning methods to model wave
propagation. In this work, we want to step towards introducing theory guided data science into
modeling wave propagation and detection. With present day research on waves gaining prominence
(e.g. recent advancements in detection of gravitational waves), we believe the method discussed in this
work can contribute towards widening the purview of theory guided machine learning on wave based
data. The usual practice in guided wave structural health monitoring, is to compare measurements
before damage (baseline data) and after damage (test data) to detect damages. From a practical
viewpoint, baseline data is not available, thus data from surrogate structures (structures similar to the
test structure) could replace baseline data, but even the slightest differences in material properties,
such as thickness, temperature, and other effects, makes this data unreliable. The work presented
in [2] overcomes this challenge and detects damage with surrogate information by using dictionary
learning framework. Dictionary learning is a branch of machine learning that finds a dictionary
matrix in which some training data is represented as a sparse linear combination of the columns
of the dictionary. We start by justifying the usage of dictionary learning framework in ultrasound
guided wave based defect detection in non-destructive structural health monitoring systems through
the analytic solution of the wave equation. We then turn to the main goal of the paper, looking
beyond black-box dictionary learning. We enforce structure into columns of dictionary matrix with
the help of a physics based regularizer [6]. Since we work with wave data, our regularizer is derived
by using the wave equation. We thus take a step towards developing a dictionary utilizing both theory
and data. From an algorithmic point of view, we unwrap the popular dictionary learning algorithm,
K-SVD [1], and integrate specific domain knowledge, in this case, the wave equation, to create a
dictionary that is restricted to the particular domain. We do this for the simple case of a fixed string
(i.e. one dimensional waves). We finally contrast the results obtained using K-SVD algorithm with
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the modified algorithm, which we confer “wave-informed K-SVD.” We train dictionaries using both
K-SVD and wave-informed K-SVD on wave data corrupted by white Gaussian noise. Wave-informed
K-SVD learns columns of dictionary matrix that do not contain noise, while simple K-SVD learns
noisy atoms. In the general paradigm of noise removal algorithms, we either have a pattern matching
step (like matched filter) or a thresholding step (in a different domain, like in frequency based filtering,
KL transform based denoising or dictionary learning based denoising [5]). Our algorithm falls mostly
in the pattern matching category, where the we do not have a single pattern but an equation that
defines a gamut of patterns. And the wave-informed KSVD picks those patterns as columns of the
dictionary matrix which satisfy the wave equation as opposed to just picking a single pattern. This
indicates an enforcement of structure by wave-informed KSVD on the atoms of the dictionary.

2 The Main Idea

The analytical solution of a linear homogeneous partial differential equation in x ∈ Rn and t ∈ R
with boundary conditions is often calculated by the method of separations of variables. We try to find
a solution of the form: fi(x, t) = u1,i(x1)u2,i(x2) · · ·un,i(xn)vn,i(t) where x = (x1, x2, · · · , xn).
Since the partial differential equation is linear and homogeneous we form, f(x, t) =

∑
i∈N aifi(x, t)

for all ai ∈ R. So that f(x, t) is also a solution of the partial differential equation. Consider the
one-dimensional wave equation:

∂2u(x, t)

∂x2
=

1

v2
∂2u(x, t)

∂t2
(1)

As the general paradigm states, for the one-dimensional case, we assume a solution of the form:

u(x, t) =
∑
n∈N

anfn(x, t) =
∑
n∈N

anun(x)vn(t) (2)

since fn(x, t) = un(x)vn(t) (again its the one-dimensional case). Skipping the details of the solution
method, we use this theoretical perspective to motivate the use of dictionary learning for decomposing
a wave solution into its constituent modes. When discrete data of a wave traveling in one dimension
is available, we can look at the function f(x, t) in discrete terms, where x and t are both discrete, and
treat it as a matrix, Y. Similarly, a function of one variable in discrete terms can be seen as a vector.
In discrete domain, the product of functions of two variables can analogously be seen as an outer
product of two vectors, say d and x (in case of more than one spatial dimensions the usual practice
is to vectorize spatial data and still have a matrix in space and time). Thus, the product ui(x)vi(t)
can analogously be seen as dix

T
i . Following the form in (2) any discrete data of waves uniformly

sampled over space and time, represented by a matrix Y, can be decomposed as: Y =
∑N
i=1 dix

T
i ,

where di represents variation over space and xi represents variation over time. Now stacking di as
columns to form a matrix D and stacking xTi as rows to form a matrix X, we have: Y = DX. Thus,
factorizing the data matrix Y as the matrix product decouples the space and time characteristics of the
propagating wave. It is usually convenient from a dictionary learning point of view if the matrix X is
sparse in each column. We observe that this can be addressed when we have only a few frequencies
present in data. We take the Fourier transform of each row of Y (i.e., Fourier transform over time). In
this situation, we have each row xTi as the Fourier transform of the respective time characterization
of each wave (note that each dix

T
i is a wave with possibly a single mode). The sparsity level of each

column of X is estimated by number of frequencies corresponding to each wavenumber present in
the wave data. Therefore, we assume a fixed level of sparsity. This decoupling of space and time (or
equivalently frequency) using dictionary learning has been used for an advantage in [2] to achieve
baseline-free damage detection. Similar work is found in [4] where they use this decoupling to unveil
anomalous regions in space. In the next section, we use this decoupling of space and frequency (or
equivalently time) to derive a regularizer based on the wave equation to embed into K-SVD, the
popular dictionary learning algorithm.

3 Wave Informed K-SVD

In this section, we assume that data is obtained from a one-dimensional medium, such as a string.
Thus, the one-dimensional wave equation is the physics model enforced into the algorithm. We take
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Fourier transforms and re-substitute fn(x, t) in equation (1), to get:

∂2un(x)

∂x2
vn(t) =

1

v2
∂2vn(t)

∂t2
un(x)⇒

∂2un(x)

∂x2
Vn(ω) =

−ω2

v2
Vn(ω)un(x)⇒

∂2un(x)

∂x2
=
−ω2

v2
un(x) (3)

when Vn(ω) 6= 0 and v is the velocity of the wave. The above equation is an eigen-value problem.
We then discretize everything above and write (3) as a discrete-space matrix form, where L is the
negative of second difference matrix

L =


−2 1 0 0 0 · · · 0
1 −2 1 0 0 · · · 0
...

...
...

...
...

. . .
...

0 0 0 0 0 · · · −2

 (4)

Thus, we can concisely write, Ld = gd for a suitable constant g = ω2

v2 (observe that
√
g is

the wavenumber associated with the dictionary atom). To enforce structure into the atoms of
the dictionary, we impose that each atom of the dictionary approximately satisfies the equation
Ld = gd. Thus, we now have an objective function with an added regularization term. We choose
regularization constants γi associated with each dictionary atom. Thus the objective function is,
min
X,D
{||Y −DX||2F +

∑K
j=1 γj‖LDj − gjDj‖22} subject to ||Xi||0 ≤ s. We solve this problem by

iterating through the classical alternate minimization approach followed in [1]. In each iteration,
the dictionary matrix and the coefficient matrix are updated. Observe that we embedded a physical
constraint due to differential equations into the dictionary learning framework. We find X(0) in the
first step, by initializing the algorithm by a random dictionary matrix D(0). Since, we assume a
sparsity level s, we find orthogonal matching pursuit ([7]) as the best fit to solve for X. This step of
updating X for a fixed D is referred to as the sparse coding step. Sparse coding is performed in every
iteration, once the dictionary is updated through the dictionary update step, described next. In the
dictionary update step, we write the k-th dictionary atom update step in the t-th iteration as,[

D
(t+1)
k , X̂

(t+1)
k , g

(t+1)
k

]
= arg min

d,u,gk

‖E(t)
k − duT ‖2F + γk‖Ld− g(t)k d‖22 (5)

such that ‖D(t+1)
k ‖2 = 1. We first derive an update rule for each g(t)k . We differentiate the function

to be minimized in (5) with respect to the scalar g(t)k at d = D
(t)
k and u = X̂

(t)
k and set it equal to

zero to find the updated value g(t+1)
k . For ease of differentiation, we choose λ to represent g(t)k , i.e.,

λ = g
(t)
k . Thus, we have, ∂

∂λ

(
‖E(t)

k − duT ‖2F + γk‖Ld− λd‖22
) ∣∣∣

λ=g
(t+1)
k

= 0 Differentiating at

g
(t+1)
k , we obtain, g(t+1)

k = D
(t)
k
TLD

(t)
k We next try to optimize for u and d, differentiating the

Lagrangian formed by the objective function defined in (5) with respect to u and setting it to zero gives
u = Ẽ

(t)
k
Td. Now re-substituting this in the objective and after dropping out terms that do not depend

on our varying quantity, D
(t)
k , and rearranging we get the objective to be argmin

Dk,‖Dk‖2=1

DT
kBDk ≡

arg max
Dk,‖Dk‖2=1

−DT
kBDk. And, B = γk

(
L− g(t+1)

k I
)(

L− g(t+1)
k I

)T
− Ê(t)Ê(t)T . The solution

to this is to choose the top eigen-vector of B. This is readily found in the optimization literature (for
e.g. [3]). Comparing with the K-SVD algorithm, this algorithm gets modified in the SVD step where
we now have to take the top eigenvector of the matrix Ẽ

(t)
k Ẽ

(t)
k
T − γk (L− gkI) (L− gkI)T instead

of Ẽ
(t)
k Ẽ

(t)
k
T (which is the same as the top left singular vector of Ẽ

(t)
k ). We now summarize this in

Algorithm 1.

4 Simulations

In this simulation, we have synthesized data of a string, fixed at both ends, oscillating in a combination
of 4 different modes and a single velocity for a time period of 2s sampled at 2000Hz. In the spatial
dimension 4000 points are taken each placed 0.01 space units apart. To testify the robustness of the
algorithm we impose an exponential reduction of the wave amplitude with time. Additionally, we
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Algorithm 1 wave-informed K-SVD, Input: Y ∈ Rm×n,K ∈ N

1: Intialize D(0), g(0) = (g
(0)
1 , g

(0)
2 , · · · , g(0)K ) and iter (no. of iterations)

2: Set t = 0
3: repeat
4: Sparse Code Stage:
5: i = 1,2,...,N ; min

Xi

{||Yi −D(t)Xi||2F } subject to ||Xi||0 ≤ s
6: Dictionary Update Stage:
7: g

(t)
k = D

(t)
k
TLD

(t)
k ; k = 1, 2, ...,K

8: E
(t)
k = Y −

∑
j 6=k D

(t)
j X̂(t)T

j ; k = 1, 2, ...,K

9: Let S contain indices of columns that are non-zero. Now Ẽ
(t)
k is formed from E

(t)
k by

selecting columns indicated by S.
10: Eigen Value Decomposition of Ẽ

(t)
k Ẽ

(t)
k
T − γk (L− gkI) (L− gkI)T = U∆U−1

11: Choose column D
(t)
k to be first column of U

12: Update X̃
(t)
k = Ẽ

(t)
k
TD

(t)
k

13: X̂
(t)
k is constructed from X̃

(t)
k by placing the elements of the latter at the indices indicated by

S, zeros otherwise.
14: t← t+ 1
15: until t == iter
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Snapshot of data over space at time t=0.049 s
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Snapshot of data over space at time t=1.1745 s

(a) Spatial data for
two different time frames

0 100 200 300 400 500 600 700 800 900 1000

Space

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

A
m

p
lit

u
d
e

Dictionary atom1

0 100 200 300 400 500 600 700 800 900 1000

Space

-0.06

-0.05

-0.04

-0.03

-0.02

-0.01

0

0.01

A
m

p
lit

u
d
e

Dictionary atom2

0 100 200 300 400 500 600 700 800 900 1000

Space

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

A
m

p
lit

u
d
e

Dictionary atom3

0 100 200 300 400 500 600 700 800 900 1000

Space

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

A
m

p
lit

u
d
e

Dictionary atom4

(b) Columns of
dictionary matrix
from K-SVD
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(c) Columns of dictionary
matrix from wave-informed
K-SVD

Figure 1: Experiment where the wave data is corrupted by Gaussian noise of SNR = -13 dB

corrupt the data with white Gaussian noise, n(x, t). A continuous version of this data is represented
by this equation: y(x, t) =

∑4
k=1 sin(kx) sin(wkt)e

−4t + n(x, t). Note that wk is calculated using
wk = vk, where v is the velocity of the wave and k is the wave number. We demonstrate the effect
of noise on the columns of dictionary matrix at SNR = -13dB. SNR is defined in the usual way,
10 log(Ps/Pn), where Ps is the signal power and Pn is the noise power, we calculate the power
over all space and time. A sampled version of y(x, t) is the matrix Ỹ. The columns of the data Ỹ
represent the string along space whereas rows represent the string along time. We take the discrete
Fourier transform on each row of Ỹ to form Y. We now perform K-SVD and wave-informed K-SVD
(with number of dictionary elements K = 4) and a sparsity of s = 1 (for the coefficient matrix
X) on Y. Each dictionary atom has a different regularization, γk. We chose the γk ∝ 1/g2k with a
proportionality constant, say γ0, of around 105. This proportionality constant is observed to depend
on the power of noise present. Comparing Figure 1b with Figure 1c, it is clear that K-SVD learns
noisy atoms from data whereas the wave-informed K-SVD learns non-noisy versions which are closer
to the actual sinusoids. We also observed a decrease in the noise levels of the dictionary atoms with
increasing value of the regularization constant. This indicates an enforcement of wave physics into
the algorithm.

5 Conclusion

The main goal of this work is to introduce an optimization framework to embed a physical constraint
into a machine learning algorithm and step towards theory guided data science for data describing
waves. We observe that the K-SVD algorithm has been naturally transformed into a modified version,
with an alteration in the dictionary update step which reflects an enforcement of the physical constraint.

4



We can look at this algorithm as a filter that filters signals based on the physical domain they are
described by. In future work, we want to analyse mathematically how the constraint introduced
affects the dictionary update step in infusing structure in the dictionary atoms. We further want to
extend this work to sparse autoencoders and delve into the question of model interpretability of the
sparse autoencoder neural network for wave based training data.
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