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Abstract

In this work we show that modern data-driven machine learning techniques can be
successfully applied on lunar surface remote sensing data to learn, in an unsuper-
vised way, sufficiently good representations of the data distribution to enable lunar
technosignature and anomaly detection. In particular we train an unsupervised
distribution learning model to find the landing module of the Apollo 15 landing site
in a testing dataset, with no dataset specific model or hyperparameter tuning. Suffi-
ciently good unsupervised data density estimation techniques have the potential
to enable a dazzling number of useful downstream tasks, including locating lunar
resources for future space flight and colonization, finding new impact craters or
lunar surface reshaping, and deciding the importance of unlabeled samples to send
back from power- and bandwidth-constrained missions. We show in this work that
such unsupervised learning can be successfully done in the lunar remote sensing
and space sciences contexts.

1 Introduction, Motivations

The search for so called technosignatures in our Solar System and beyond has gained new attention
recently [1]. Here, technosignatures are physical properties or effects that provide scientific evidence
of past or present extraterrestrial technology [2]. According to NASA the search for technosignatures
should be performed in parallel to the search for biosignatures in the field of astrobiology, as
technosignatures could reveal the existence of intelligent life elsewhere in the universe [1]. One
area in the field of technosignature research is the search for non-terrestrial artifacts in our Solar
System, particularly on the surfaces of planets and moons [e.g., 1, 3, 4]. [5] suggested to start a
systematic search for ground-based technosignatures on the lunar surface. Besides technosignatures,
there are other objects of scientific relevance on the lunar surface, such as fresh impact craters, etc.
However, traditional search methods involve inspection of remote sensing data by human operators,
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which is a slow, biased, and inefficient process. In addition, the physical shape, form, and material of
technosignatures is completely unknown and signatures could easily be missed by operators. However,
there is a wealth of remote sensing data available, meaning that the bottleneck of technosignature
search is the human component.

In recent years, numerous powerful machine learning methods have been developed, such as vision
methods [7] and explicit data distribution learners, including variational autoencoders (VAEs) [8, 9],
flow based models [10], and auto-regressive models [11]. Our motivation is to utilize such machine
learning-driven approaches to automate technosignature search and to prove the potential of explicit
data distribution learners to extract scientifically relevant results from space exploration data. For
technosignature search, a data and ML-driven approach would provide unique advantages: 1) large
data sources enable us to scan the surfaces of entire planets and moons, 2) machine learning allows
us to remove the human in the loop and to automate the scanning process, and 3) the utilization of
unsupervised methods allows us to scan for anomalies without a priori knowledge about the physical
state and form of the to-be-detected targets. For this proof of concept, the Moon is an ideal test
bed, as there is a wealth of satellite data available and as numerous exploration missions have left
non-natural relics on the surface, such as the Apollo and Luna missions, that can serve as ground
truth for model validation and testing.

2 Methods

2.1 Data

The detection of objects with unknown shapes and sizes on the surface of a planet or moon requires
imagery with two main characteristics, 1) sufficient spatial resolution and 2) global coverage. On the
Moon, only one sensor has both characteristics, the Narrow Angle Camera onboard NASA’s Lunar
Reconnaissance Orbiter (LRO). Since LRO’s launch in 2009, NAC covered the entire surface of the
Moon multiple times, returning more than 1.6 million optical images with a spatial resolution ranging
from 0.5 to 1.5 m/pixel. These NAC images can be retrieved from the Planetary Data System
(PDS) in a large variety of formats and processing levels. While there are many lunar global datasets
available, the NAC image stack is the only data with spatial resolutions sufficient for the detection of
small geomorphological and human-made objects. For this study, we used the uppermost layer of
the pre-calibrated pyramid tif files (ptifs) that can be retrieved from the LROC image archive. These
images provide the full spatial resolution (in the top layer), but are reduced in size, as they have been
reduced to 8bit. The reduced size allows for optimized file download, handling, and processing times.

In a first step we collected all available NAC imagery over the Apollo 15 and 17 landing sites with
spatial resolutions higher than 0.8 m/pixel. We then tiled these images in patches of 64x64 pixels,
resulting in 255,000 NAC tiles. This dataset had a stride of thirty-two pixels, so that each pixel was
included, on average, in four images. All used patches cover an area of approximately sixty-four
million square meters and include the Apollo 15 and 17 landing sites.

2.2 Model

For our unsupervised data distribution learner, we used a variational autoencoder (VAE). [13, 14]
This autoencoder has an encode (decode) module layers eight layers deep that alternated between
convolution (transposed convolution) and batch norm layers. By the end of the encoding layer, the
data undergoes a learned transformation from its native 3 channels x 64 pixels x 64 pixels image
space size to 128 filters each of size 16 pixels x 16 pixels. We used a default informational bottleneck
latent code dimension size of 26, but varied this down to 23 and up to 211 to control model capacity,
as well as training time, inference time and memory size, between experiment runs. We used the
reparametrization trick to allow differentiability through the stochastic sampling process of the VAE.
The loss bound that we sought to minimize included the calculation of the KL divergence between
the distribution of latent codes and a multivariate Gaussian prior with dimension that is the size of the
informational bottleneck latent code dimension. We also used the approach of the beta-VAE literature
[12]to upweight the divergence term of the loss to promote disentangled learned representations. The
anomaly score of an image relative to our trained model is the L2 reconstruction loss between the
image and the VAE’s reconstruction of the image. A promising anomaly score, not yet fully evaluated,
is the norm of the µ vector in the VAE’s code of that image, which can be seen as a distance of the
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image’s latent code from the mode of the latent code distribution, and hence a quantitative degree of
anomaly-ness.

2.3 Metrics, Evaluating Lunar Surface Anomalies

For evaluating anomaly detection on the lunar surface, we took NAC image patches with human-made
artifacts as positive anomalous samples for our experiments, and all image samples with no known
human-made artifacts negative non-anomalous samples. Examples of these human-made artifacts
in our study were lunar lander modules left from the American Apollo 15 and 17 missions. For
model evaluation metrics, we used the average precision (AP) of our model’s precision recall curves,
precision at total recall (PaTR), defined as

PaTR = precision at the model’s threshold where the model returns all positive samples,

and efficiency over manual vetting (EoMV), defined as

EoMV =
PaTR

precision of the naive random anomaly scorer
.

The motivation for EoMV is from considering it as the fraction of images needed to be vetted by a
human using a random search over the ratio of images needed to be vetted by a human using our
model to present images by descending anomaly score order.

2.4 Software, Hardware

We used PyTorch for training, JupyterLab with Python to coordinate the experiments, and the seaborn
statistical visualization python package to view and plot results. We used an NVIDIA GeForce GTX
1070 and Intel Core i7 system with 512 GB SSD for training and validation.

3 Experiments

For our first set of experiments, we sought to verify our proposed method using a toy dataset
containing 200 image patches around the Apollo 17 landing site, containing four positive lunar
technosignature patches. For our second set of experiments, we tuned our model architecture and
hyper-parameters on a validation set containing the Apollo 17 landing site. We used a dataset of 2000
image patches around the Apollo 17 landing site with six positive patches. More positive patches
were obtained over our first experiment through a finer vertical striding of the dataset creation. For
our third set of experiments, we validated the performance of our method on a test set containing a
new, unseen landing site, Apollo 15, with no tuning of model architecture or hyper-parameters on this
dataset. We used a dataset of 8000 image patches around Apollo 15 landing site, which contained
ten positive technosignature patches. The model architecture and all other model and optimizer
hyper-parameters were learned one the train set above, and evaluated on our train set in a one-shot
fashion, with results reported below. Extra care was taken to avoid hyperparameter leakages between
optimizing our approach on the train set and evaluating performance on our train set, due to the
acutely limited nature of human lunar technosignatures.

4 Results

4.1 Lunar VAE Landing Site Validation

For our smallest dataset containing 200 patches, our method achieved an AP and PaTR of 1.00 with
minimal tuning by returning all positive samples before all negative samples. Hence we moved to a
more challenging and diverse validation dataset. For our larger validation dataset of 2000 patches, in
Figure 1 we plot the precision-recall curve with metrics for validation on our Apollo 17 train set, and
the distribution of anomaly scores of all samples on the horizontal axis versus only positive samples
on the horizontal axis. We achieve an AP of 0.25, PaTR of 0.333, resulting in an EoMV of 0.333

0.003 =
111. Note the unusual shape of the PR curve, which was due to a clustering of the positive sample
anomaly scores into one mode.
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Figure 1: Validation set precision-recall curve with metrics (left) and the distribution of anomaly
scores of all samples on the horizontal axis (middle) versus only positive samples on the horizontal
axis (right).

4.2 Lunar VAE Landing Site Test

In Figure 2 we plot the precision-recall curve with metrics for validation on our Apollo 17 train set,
and the distribution of anomaly scores of all samples on the horizontal axis versus only positive
samples on the horizontal axis. We achieve an AP of 0.49, PaTR of 0.055, and an EoMV of 0.055

0.0012 =
45.8. We note the high left hand portion of the PR curve, which was due to the top three returned
samples being positive samples.

Figure 2: Test set precision-recall curve with metrics (left) and the distribution of anomaly scores of
all samples on the horizontal axis (middle) versus only positive samples on the horizontal axis (right).

4.3 Evaluation of Learned Features

In Figure 3, we plot two different input images each presented twice (top row) with their corresponding
reconstructed images through the VAE’s forward pass (bottom row). We note the stochastic nature
of VAE generation. In the same figure we plot a sample walk through the learned latent variable
space of our trained model on the Apollo 17 landing site. We consider the relative quality of
reconstruction and the smoothness of interpolation between the two data samples at upper-left and
lower-right hand corners as evidence that the unsupervised generative model was able to learn a
good representation of the underlying lunar dataset, in addition to the performance of the learned
distribution for technosignature detection.

Figure 3: Sample reconstructions of two images (left) and a sample walk through the learned latent
variable space (right).
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5 Conclusion

In this work we show that modern data-driven machine learning techniques can be successfully
applied on lunar surface data to learn, in an unsupervised way, sufficiently good representations of
the distribution of lunar surface data to enable lunar technosignature detection. In particular we
have trained an unsupervised distribution learning model to find the landing module of the Apollo
15 landing site in a testing dataset, with no specific model or hyperparamter tuning . Good data
density estimation has myriad applications in lunar and space sciences, including finding known
missions with unknown landing sites, discovering non-publicly disclosed landing sites, either by
governmental or non-governmental organizations, technosignatures in other signal domains, locating
lunar resources for future space flight and colonization, locating new impact craters or lunar surface
reshaping, e.g. when applying this to temporal stacks of images, and deciding the importance of
unlabeled samples to send back from power- and bandwidth-constrained missions. We hope this
current work stimulates and enables future work towards these goals.
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