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Abstract

Particle physics or High Energy Physics (HEP) studies the elementary constituents
of matter and their interactions with each other. Machine Learning (ML) has
played an important role in HEP analysis and has proven extremely successful
in this area. Usually, the ML algorithms are trained on numerical simulations of
the experimental setup and then applied to the real experimental data. However,
any discrepancy between the simulation and real data may lead to dramatic conse-
quences concerning the performances of the algorithm on real data. In this paper,
we present an application of domain adaptation using a Domain Adversarial Neural
Network trained on public HEP data. We demonstrate the success of this approach
to achieve sim-to-real transfer and ensure the consistency of the ML algorithms
performances on real and simulated HEP datasets.

1 Introduction

Elementary particles and the way they interact with each other are studied in particle collider facilities
such as the Large Hadron Collider (LHC) [1]. Out of the collision between two particles, new
particles will emerge and interact with the detectors placed around the collision site. These detectors
provide information such as the particle position, the arrival time and its energy deposit inside the
detector which allow to reconstruct the particle trajectory and identify it. Between the produced
particles, various correlations and quantities are computed to classify the collision. Classically based
on advanced statistics, physicists study patterns and/or compare the results of this classification to
Standard Model predictions, hoping to find a deviation hinting “New Physics”.

However, in the recent years, Machine Leaning (ML) brought new levels of performance in the
classification exercise. In real experimental data, the labels are rarely available and, as a consequence,
ML classifiers are usually trained on numerical simulations. The simulation is divided into two main
parts: simulation of the high-energy physics processes, e.g., collision/production of particles, and
simulation of the detector responses to the produced particles. Both parts may need approxima-
tions due to the complexity of the physics processes, causing discrepancies between simulated and
experimental data which could dramatically lower the classifier performances with real data.

In this work, we are performing the classification of a LHCb public dataset 1 with a Domain-
Adversarial Neural Network (DANN), a Transfer Learning (TL) technique, and compare it to the
performances of a regular Neural Network both trained on the same simulation.

2 Dataset

The dataset studied in this paper was produced for the LHCb experiment at CERN [2]. The main goal
of the LHCb experiment is the search for possible contributions from physics beyond the Standard

1Flavours of Physics: finding τ → µµµ. www.kaggle.com/c/flavours-of-physics/overview
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Model by performing precision measurements of CP violating observables and rare decays of hadrons
containing a b quark or a c quark. LHCb collaboration posted a data challenge on Kaggle site, for
ML application purpose, whose aim is to find charged lepton flavour violation, a possible signal of
new physics. The main task of this analysis is to design a ML classifier to select the data of interest
(signal) consisting of the decay of the elementary lepton particle τ to the three quasi-stable lepton
particle µ. The LHCb dataset available for the training consists of mixture of simulated and real
data which are respectively used to describe the signal and background. The dataset feature space
is composed by 58 variables, reconstructed from the detector responses and representing physical
quantities that describe τ -decay. The dataset contains 67533 examples, where 62% are signal events.

Another dataset, called control sample, was provided to evaluate the agreement of the classifier on
simulated and real data. This dataset contains simulated and real events from the channel decay
Ds → φπ → 3µ, that has a similar topology as the signal channel decay τ → 3µ and the same
feature space. The simulation (source) contains 8205 examples and the real data (target) contains
322942 examples with weight values. The weights are estimated using sP lot method [3]. The weight
of each example describes a probability to be signal or background: higher (resp. lower) weights
mean this event is likely to be signal (resp. background). The agreement of the trained classifier is
evaluated using the Kolmogorov Smirnov distance between the classifier probability output from
source control (simulation) and target control (real data).

Since the same framework was used to collect the examples for both training and control samples,
the shifts between real data and simulation for the process of interest τ → 3µ are expected to be
similar to the shifts for the control process Ds → φπ → 3µ. The goal is then to learn simulation/real
experiment discrepancies with the control process and then transfer this knowledge to the classifier
searching for the τ → 3µ process in experimental data.

3 Related Work

Transfer learning consists in reusing a pre-trained model on a new problem that is, in a certain way,
more or less related to the first one. It has been carried out successfully in several fields as image
recognition [4, 5, 6], sentiment classification [7, 8] or robotics [9, 10, 11]. Sim-to-real transfer has
been particularly studied in robotics [11, 12]: it is a sub-domain of transfer learning that aims at
transferring a model trained on simulated data to real data. This is a paramount approach for HEP
data. Indeed, the simulation modeling solves real-world problems safely and efficiently and allows the
generation of unlimited size datasets. For ML application, learning from a simulation and applying
the acquired knowledge to the real world can provide a robust ML models with less time-consuming
and data search, specially for ML application related to hardware interaction. However, the simulation
is not able to fully replicate all reactions in the real world, which can create a dataset shift between the
two domains, simulation and reality. The application of transfer learning in physics is growing due
the wide use of the computing simulation in different analysis. It has been applied as example in the
modeling of inertial confinement fusion experiments [13], galaxy detection [14, 15], or gravitational
wave detection [16].

HEP experiments are growing in size and complexity and computer simulation of these experiments
are essential for analyzing and interpreting experimental data.

The dataset shift between HEP simulation and real experimental data is also present, and is mainly
relying on the complexity of the physics interactions at this level of energy and scale.

4 Sim-to-Real domain adaptation

4.1 Motivations

The first motivation of this work is that simulations provide a lot of labeled data whereas there are
very few real labeled data. So far, the process of real data is unavoidable. Applying a classifier
trained on simulations on real data decreases indeed the performance of classification, while mainly
increasing the systematic uncertainty which lowers the significance of the results.

To achieve that, characterizing the dataset shift between simulation and real experiment gives an idea
about the appropriate transfer learning technique for a specific learning task. The transfer of ML
algorithm trained on HEP simulation represents a task of Domain Adaptation (DA) [17, 18, 19]. In
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this case of DA, the source with labels is provided by the HEP simulation and the target without label
by the events from the detector response. We aim in this ML application study at selecting an event
of interest by physics process classification, with an ML model trained on simulation and targeted to
real data. In this HEP study context, the dataset shift can be categorized under three types [20]:

• the prior probability shift occurs when the estimation of the total rate of background or data
of interest in the simulation is not the same as in the reality;

• the covariate shift occurs when the geometry of the physics process, for instance the angular
or energy distribution of the produced particles, is approximate or when the performance of
the detector is not ideally realistic in the simulation framework. However the rate of data of
interest with respect to the background is correctly defined;

• the concept shift occurs when the simulation are not considering all the categories of physics
processes in the real data, thus are counted as a form of signal or background.

In the case of fully unlabeled target, the prior probability and covariate shift can be corrected.
However, the concept shift requires labeled target data since this type of shift is related to data drift,
where classifiers are deployed in non-stationary environments [21].

The studied dataset, described in section 2, is expected to contain a covariate shift between the source
and target domain. In this case, the two related domains, described by the same input and output space
X and Y , have an equivalent posterior distribution p(x|y), but different probability input distributions
p(x).

4.2 Domain Adaptation with Adversarial Network

Domain adaptation is achieved by training a model on labeled data S from a source domain DS while
minimizing test error on a target domain DT, for which no labels in the target data T are available at
training time. Driven by a simple assumption, the source risk RDS

is expected to be a good indicator
of the target risk RDT

when both distributions are similar. This approach is validated by the theory
obtained by Ben David et al. [17, 22], proving that for an effective domain transfer to be achieved,
predictions must be made based on a data representation that cannot discriminate between the source
and target domains.

Several DA approaches implement this idea of domain similarity space (feature alignment) in the
context of neural network architectures, by minimizing statistical distance between distributions [23,
24] or by adversarial domain alignment [25, 26].

A Domain-Adversarial Neural Network (DANN) [25] represents an appropriate approach to learn a
HEP classifier that can generalize well from simulation to real experimental context. It consists in a
feed-forward network with added standard layers and a gradient reversal layer.

This method is easy to implement since DANN can be trained with standard backpropagation and
stochastic gradient descent (available in every deep learning libraries), less time-consuming with
respect to domain distribution alignment with statistical distance minimization and can easy handle
weighted examples, which motivated the use of this approach in the current HEP data analysis. The
feature alignment can then be performed with the control process: in the DANN, the network hidden
layer working adversarially towards output connections predicting domain membership learns from
control process examples instead of the process-of-interest examples.

5 Experiment and results

To demonstrate the performance of DANN on LHCb dataset, we trained a benchmark classifier based
on standard feedforward neural network, containing one input layer with the size of the input space,
one hidden layer with 100 neurons and an output layer with two neurons. In this architecture, we use
hyperbolic tangent as activation function and the cross-entropy as a cost function. In the other hand,
the DANN model is designed with the same architecture of the benchmark model but in addition
to the output layer, the hidden layer is linked to a gradient reversal layer with two output neurons
used to classify the domain (simulation or real data) using control channel examples. Both ML
architectures are trained using standard backpropagation and stochastic gradient-based optimizer
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Adam. The standard NN is trained only on the training dataset and the DANN is trained on training
(class) and control (domain) data.

For both classification tasks, with and without adversarial network, the datasets are split into two
subsets, one for the training, containing 70% of the initial data, and one for the evaluation, named
testing dataset. During the optimization, the training dataset is divided into 22 batches with size of
3000 examples. Figure 1 shows the evolution of the accuracy for both models function of the epoch
iteration. Simply based on accuracy and convergence speed, the NN classifier outperforms the DANN
classifier, with an accuracy of 88.1% against 84.0% on simulation as shown by Figure 1.

To ensure the conservation of these performances with real data, a Kolmogorov Smirnov distance
between the output probability distributions of the classifiers on source and target for the process
of interest (displayed in Figure 1) must be found below 0.09: for the standard NN, the distance is
0.19 and for the DANN, it is 0.06. The performances of the DANN-classifier are therefore conserved
between simulation and experimental data while they are not for the standard NN.

Figure 1: Left: Accuracy values along NN (top) and DANN (bottom) models optimization. Right:
Output prediction probability using trained NN (top) and DANN (bottom). The overlap of source and
target curve for DANN demonstrates the effectiveness of the domain adaptation.

6 Conclusion

Since HEP simulation is never exactly representative of experiments, a robust characterization of the
ML classifier performances on unlabeled real data is hard to achieve. Such a characterization being
mandatory for publication, domain adaptation from HEP simulation to real HEP experimental data is
essential.

In this paper, we categorized the possible sources of dataset shifts between simulation and real data
in a realistic HEP data challenge. Domain adaptation is achieved by training a DANN: trained with a
control physics process with similar geometry as the process-of-interest, its adversarial part ensures
that the resulting ML classifier is as little biased as possible by shifts between simulation and reality.
A Kolmogorov-Smirnov test between the output probability distribution of the classifier on simulation
and on real data for the process-of-interest confirms that the classifier is unbiased and, therefore,
its performances are identical on simulation and real data unlike a standard NN-classifier. In other
words, any signal found in the experimental data by the DANN-classifier would be directly validated
as a discovery of physics beyond the standard model.

4



References
[1] Lyndon Evans and Philip Bryant. LHC machine. Journal of Instrumentation, 3(08):S08001–

S08001, aug 2008.

[2] A. Augusto Alves, Jr. et al. The LHCb Detector at the LHC. JINST, 3:S08005, 2008.

[3] Muriel Pivk. splot: A quick introduction. Physics, 2006.

[4] Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. Image style transfer using convolu-
tional neural networks. In The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2016.

[5] R. Gopalan, Ruonan Li, and R. Chellappa. Domain adaptation for object recognition: An
unsupervised approach. In 2011 International Conference on Computer Vision, pages 999–1006,
Nov 2011.

[6] Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef Sivic. Learning and transferring mid-
level image representations using convolutional neural networks. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), June 2014.

[7] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Domain adaptation for large-scale sentiment
classification: A deep learning approach. In Proceedings of the 28th International Conference
on International Conference on Machine Learning, ICML’11, pages 513–520, USA, 2011.
Omnipress.

[8] Hong-Wei Ng, Viet Dung Nguyen, Vassilios Vonikakis, and Stefan Winkler. Deep learning for
emotion recognition on small datasets using transfer learning. In Proceedings of the 2015 ACM
on International Conference on Multimodal Interaction, ICMI ’15, pages 443–449, New York,
NY, USA, 2015. ACM.

[9] X. B. Peng, M. Andrychowicz, W. Zaremba, and P. Abbeel. Sim-to-real transfer of robotic
control with dynamics randomization. In 2018 IEEE International Conference on Robotics and
Automation (ICRA), pages 1–8, May 2018.

[10] Andrei A. Rusu, Matej Vecerik, Thomas Rothörl, Nicolas Heess, Razvan Pascanu, and Raia
Hadsell. Sim-to-real robot learning from pixels with progressive nets. CoRR, abs/1610.04286,
2016.

[11] Jeroen van Baar, Alan Sullivan, Radu Cordorel, Devesh K. Jha, Diego Romeres, and Daniel
Nikovski. Sim-to-real transfer learning using robustified controllers in robotic tasks involving
complex dynamics. CoRR, abs/1809.04720, 2018.

[12] Florian Golemo, Adrien Ali Taiga, Aaron Courville, and Pierre-Yves Oudeyer. Sim-to-real
transfer with neural-augmented robot simulation. In Aude Billard, Anca Dragan, Jan Peters,
and Jun Morimoto, editors, Proceedings of The 2nd Conference on Robot Learning, volume 87
of Proceedings of Machine Learning Research, pages 817–828. PMLR, 29–31 Oct 2018.

[13] Kelli D. Humbird, Jayson Luc Peterson, and Ryan G. McClarren. Transfer learning to model
inertial confinement fusion experiments. CoRR, abs/1812.06055, 2018.

[14] Sandro Ackermann, Kevin Schawinski, Ce Zhang, Anna K Weigel, and M Dennis Turp. Using
transfer learning to detect galaxy mergers. Monthly Notices of the Royal Astronomical Society,
479:415–425, 09 2018.

[15] Asad Khan, E.A. Huerta, Sibo Wang, Robert Gruendl, Elise Jennings, and Huihuo Zheng. Deep
learning at scale for the construction of galaxy catalogs in the dark energy survey. Physics
Letters B, 795:248 – 258, 2019. ISSN 0370-2693.

[16] Daniel George, Hongyu Shen, and E. A. Huerta. Classification and unsupervised clustering of
ligo data with deep transfer learning. Phys. Rev. D, 97:101501, May 2018.

[17] Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and Jen-
nifer Wortman Vaughan. A theory of learning from different domains. Machine Learning, 79
(1):151–175, May 2010.

[18] Vishal M. Patel, Raghuraman Gopalan, Ruonan Li, and Rama Chellappa. Visual domain
adaptation: A survey of recent advances. IEEE Signal Processing Magazine, 32:53–69, 2015.

[19] Sinno Jialin Pan and Qiang Yang. A survey on transfer learning. IEEE Trans. on Knowl. and
Data Eng., 22(10):1345–1359, October 2010.

5



[20] Joaquin Quionero-Candela, Masashi Sugiyama, Anton Schwaighofer, and Neil D. Lawrence.
Dataset shift in machine learning. 01 2009.

[21] Gerhard Widmer and Miroslav Kubat. Learning in the presence of concept drift and hidden
contexts. Machine Learning, 23(1):69–101, Apr 1996.

[22] Shai Ben-David, John Blitzer, Koby Crammer, and Fernando Pereira. Analysis of representations
for domain adaptation. In B. Schölkopf, J. C. Platt, and T. Hoffman, editors, Advances in Neural
Information Processing Systems 19, pages 137–144. MIT Press, 2007.

[23] Mingsheng Long, Yue Cao, Jianmin Wang, and Michael Jordan. Learning transferable features
with deep adaptation networks. In Francis Bach and David Blei, editors, Proceedings of the
32nd International Conference on Machine Learning, volume 37, pages 97–105, Lille, France,
07–09 Jul 2015. PMLR.

[24] Baochen Sun and Kate Saenko. Deep CORAL: correlation alignment for deep domain adaptation.
CoRR, abs/1607.01719, 2016.

[25] Yaroslav Ganin and Victor Lempitsky. Unsupervised Domain Adaptation by Backpropagation.
arXiv e-prints, art. arXiv:1409.7495, Sep 2014.

[26] Eric Tzeng, Judy Hoffman, Trevor Darrell, and Kate Saenko. Simultaneous deep transfer across
domains and tasks. CoRR, abs/1510.02192, 2015.

6


	Introduction
	Dataset
	Related Work
	Sim-to-Real domain adaptation 
	Motivations
	Domain Adaptation with Adversarial Network

	Experiment and results
	Conclusion

