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Abstract

Properties of a molecule depend on a variety of relationships between its atoms. On
a high level, these relationships might include a spatial proximity, an existence of a
chemical bond, or simply a co-occurrence of two atoms. However, the commonly
used graph-based models use only the chemical bonds to define neighbourhood.
Motivated by this we propose Molecule-Augmented Attention Transformer model.
Our key innovation is augmenting the attention mechanism in Transformer using
the inter-atomic distances, and the molecular graph structure. Experiments on
molecular property prediction tasks show effectiveness of the approach.

1 Introduction

Deep learning has become a valuable tool for modeling molecules. During the years, the community
has progressed from using handcrafted representations, to representing the molecule as a string
of symbols, and finally to the currently popular approaches based on graph convolutional neural
networks [Goh et al., 2017, Ching et al., 2018].

Graph convolutional networks gather information in each layer from adjacent nodes in the graph.
Using the graph structure acts as a strong prior and improves generalization in a range of molecule
modeling tasks [Wu et al., 2018]. Some of the most recent works generalize the gather operation in
GCNs: Veličković et al. [2017], Shang et al. [2018] proposes to augment GCNs with an attention
mechanism, Li et al. [2018] introduces a model that dynamically learns neighbourhood function in
the graph.

In parallel to these advances, using the three-dimensional structure of the molecule is becoming
increasingly popular [Schütt et al., 2017, Schütt et al., 2017, Gilmer et al., 2017, Feinberg et al., 2018,
Cho and Choi, 2018, Lu et al., 2019]. These approaches factor in the inter-atomic distances, often to
augment the graph-based neighbourhood.

Our main contribution is unifying these ideas in a model based on the widely successful Transformer
architecture [Vaswani et al., 2017]. We propose the Molecule-Augmented Attention Transformer
(MAT) that at each step augments the self-attention layer using the graph and the three-dimensional
structure of the molecule. By design, we allow the model to use the molecule structure in a flexible
manner adapted to the task. We show that our model achieves strong performance on a wide range of
molecule property prediction tasks.
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Figure 1: Molecule-Augmented Attention Transformer architecture. In the first layer we embed each
atom using one-hot encoding and atomic features. The main innovation is the Molecule Multi-Head
Self-Attention block that augments the self-attention module with distance, and graph structure of the
molecule.

2 Molecule-Augmented Attention Transformer

In this section, we briefly review Transformer model and introduce our Molecule-Augmented Atten-
tion Transformer (MAT).

2.1 Transformer

On a high level, Transformer (for classification) consists of N blocks followed by a pooling and
a classification layer. Each block is composed of a multi-head self-attention layer, followed by a
feed-forward block that includes a residual connection and layer normalization.

The multi-head self-attention is composed of H heads. Each head takes as input hidden state H

and computes first Qi = HWQ
i , Ki = HWH

i , and Vi = HWV
i . These are used in the attention

operation as follows:

A(Qi,Ki,Vi) = softmax
(
QiK

T
i√

dk

)
Vi. (1)

When H is larger than 1, the individual outputs are concatenated and projected down first. Finally,
the output is processed by a feed-forward network and added residually to the current hidden state.

2.2 Molecule-Augmented Attention Transformer

Our main contribution is Molecule-Augmented Attention Transformer (MAT), a Transformer-based
model adapted to processing molecules. The architecture is shown in Figure 1.

We base our model on the widely successful Transformer architecture. In Transformer the self-
attention can be interpreted as a soft adjacency matrix between the elements of the input se-
quence [Battaglia et al., 2018]. As an example, Li et al. [2018] suggests that a flexible definition of the
neighbourhood can considerably improve performance. Another benefit of using Transformer is its
state-of-the-art performance in a range of applications, not only limited to the language domain [Bello
et al., 2019].
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Transformer architecture has been applied recently to chemistry by representing the molecule us-
ing SMILE(s) notation [Schwaller et al., 2019]. However, using a molecule structure improves
performance across many tasks [Duvenaud et al., 2015, Schütt et al., 2017]. Motivated by this we
propose Molecule-Augmented Attention Transformer guided by two design principles. First, we
use the structure of the molecule as a prior for the attention strength. Second, to ensure flexibility,
in the experiments we tune the strength of the prior individually for each dataset by treating it as a
hyperparameter.

Molecule Multi-Head Self-Attention. To practically realise these guidelines, we augment the
attention in Equation 1 using the molecule structure represented by the graph adjacency matrix
E ∈ {0, 1}N×N , and the inter-atomic distance matrix D ∈ RN×N . To allow for flexibility, we tune
hyperparameters that influence the prior importance of these.

More concretely, we augment the self-attention matrix as follows. Let λa, λd, and λg denote scalars
weighting the self-attention, distance, and adjacency matrices. Then we modify Equation 1 as follows:

A (Qi,Ki,Vi) =

(
λasoftmax

(
QiK

T
i√

dk

)
+ λdg(−D) + λgE

)
Vi, (2)

see also Figure 1. We will denote λa, λd, and λg jointly as λ. In the experiments, we treat λa, λd, and
λg as hyperparameters and keep them frozen during training. We use as g either softmax (normalized
over the rows), or an element-wise g(d) = exp(d). We use standard atom features to embed the
molecule. Finally, the distance matrix D is computed using rdkit. Please refer to the Supplement on
more details on the input representation.

3 Experiments

In this section, we demonstrate a strong performance of MAT across a range of molecule prediction
tasks. We also include experiments on a simple toy task in the Supplement.

3.1 Predicting molecule properties

We first run experiments on a wide range of datasets that represent typical tasks encountered
in molecule modeling: FreeSolv, ESOL, Blood-brain barrier permeability (BBBP), MetStabhigh,
MetStablow. We expect that performance on these tasks to depend to a various degree on the geometry
of the molecule. Please refer to the Supplement for more details on the datasets used.

Experimental setting. We compare Molecule-Augmented Attention Transformer to the following
baselines: GCN, Random Forest (RF) and Support Vector Machine with RBF kernel (SVM); and to
the following recently proposed models: Edge attention-based multi-relational graph convolutional
networks (EAGCN) [Shang et al., 2018], Message Passing Neural Networks (MPNN) [Gilmer et al.,
2017] and Weave [Kearnes et al., 2016]. For comparison we also include MATgraph model with fixed
λd and λa to 0. We do not compare to other results in the literature on these datasets, because the
vast majority of the prior work use custom splits for evaluation.

For all the models we tune the hyperparameters by a random search with a fixed budget of 100 trials. In
the early experiments, we found that our model inherits Transformer’s training instability [Schwaller
et al., 2019]. To counteract this we tune many hyperparameters of MAT, which allows us to find a
stable configuration. More precisely, we tune 16 different hyperparameters, including batch size,
learning rate, number of epochs, and weight decay. Please refer to the Supplement for full details. To
investigate the importance of the search budget we additionally include MAT500 where we increased
the budget to 500 trials, and MAT566 where we additionally tuned λd and λg by testing all λd, λg
values (66) from the grid, keeping fixed all the other hyperparameters to the optimal values before.

We use random split for FreeSolv and ESOL (consistent with Wu et al. [2018]), and for the MetStab
datasets. For all the other datasets we use scaffold split. Test performance is based on the best
validation epoch. Each training was repeated three times. All the other experimental details are
reported in the Supplement. The code is available at https://github.com/gmum/MAT.
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Results on the benchmark datasets. Table 1 summarizes the test set performance of the models
on the three tasks from the MoleculeNet benchmark. We can observe MAT achieves the strongest
result on BBBP and FreeSolv datasets, and loses to MPNN on ESOL. Interestingly, MAT566 matches
the performance of MPNN on ESOL, showing that we undertuned some of the hyperparameters.

We can also observe that MAT achieves better performance than MATgraph across all tasks. This is an
important sanity check showing that Euclidean distances, as well as the added flexibility, are both
important factors in the overall strong performance of MAT.

Table 1: Test set performance on the benchmark datasets. Molecule-Augmented Attention Trans-
former achieves strongest performance on BBBP and FreeSolv. Additionally, increasing the hyperpa-
rameter search budget in MAT500 and MAT566 further improves performance, matching MPNN on
ESOL.

BBBP (AUC) ESOL (RMSE) FreeSolv (RMSE)

SVM 0.603 ± 0.000 0.493 ± 0.000 0.391 ± 0.000
RF 0.551 ± 0.005 0.533 ± 0.003 0.550 ± 0.004
GC 0.690 ± 0.015 0.334 ± 0.017 0.336 ± 0.043
Weave 0.703 ± 0.012 0.389 ± 0.045 0.403 ± 0.035
MPNN 0.700 ± 0.019 0.303 ± 0.012 0.299 ± 0.038
EAGCN 0.664 ± 0.007 0.459 ± 0.019 0.410 ± 0.014
MATgraph 0.655 ± 0.011 0.333 ± 0.004 0.353 ± 0.032
MAT 0.711 ± 0.007 0.330 ± 0.002 0.269 ± 0.007
MAT500 0.737 ± 0.006 0.316 ± 0.005 0.269 ± 0.007
MAT566 0.736 ± 0.009 0.298 ± 0.005 0.259 ± 0.014

Results on the biophysical datasets. We run similar experiments on the biophysics datasets.
Table 2 reports the results. Similarly to [Wu et al., 2018] we excluded MPNN from the comparison;
in our case, the runs took over an order of magnitude longer than all the other models.

The key result is that GCN and MAT perform quite similarly; GCN achieves even better mean test
performance on hERG and MetStablow datasets. This is in line with [Wu et al., 2018] that finds
that simple models are currently strong baselines on biophysics datasets, and that simple models
using distances might perform worse on biophysical tasks. Comparing this to the overall consistent
performance of MAT shows that the flexibility in adapting λ is an important feature of our model.

Table 2: Test set AUC on the biophysical datasets. On the whole, in this setting GCN and MAT
perform similarly.

Estrogen Alpha Estrogen Beta hERG MetStablow MetStabhigh

SVM 0.933 ± 0.000 0.765 ± 0.000 0.810 ± 0.000 0.828 ± 0.000 0.822 ± 0.0
RF 0.928 ± 0.003 0.770 ± 0.004 0.769 ± 0.003 0.796 ± 0.004 0.706 ± 0.008
GCN 0.974 ± 0.005 0.726 ± 0.011 0.917 ± 0.015 0.856 ± 0.013 0.874 ± 0.014
Weave 0.961 ± 0.005 0.766 ± 0.018 0.765 ± 0.034 0.612 ± 0.009 0.778 ± 0.039
EAGCN 0.937 ± 0.031 0.724 ± 0.025 0.826 ± 0.011 0.779 ± 0.034 0.697 ± 0.019
MATgraph 0.961 ± 0.002 0.754 ± 0.005 0.881 ± 0.000 0.826 ± 0.004 0.876 ± 0.01
MAT 0.977 ± 0.003 0.790 ± 0.003 0.906 ± 0.007 0.839 ± 0.009 0.892 ± 0.005
MAT500 0.977 ± 0.003 0.768 ± 0.007 0.906 ± 0.007 0.859 ± 0.004 0.892 ± 0.005
MAT566 0.981 ± 0.002 0.778 ± 0.006 0.92 ± 0.002 0.877 ± 0.013 0.894 ± 0.008

4 Conclusions

In this work, we have proposed Molecule-Augmented Attention Transformer model. The key innova-
tion is the Molecule Multi-Head Self-Attention layer that augments the self-attention mechanism
with the three-dimensional and graph structure of the molecule.
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The flexibility in the model design allows for its easy extension. One natural direction for future work
is integrating even more prior information, e.g. the forces between the atoms, or types of chemical
bonds.
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B Molecule-Augmented Attention Transformer: input representation

We describe here how we represent the input in Molecule-Augmented Attention Transformer.

Input features. We embed each atom as a 25 dimensional vector following [Coley et al., 2017],
see Table 3. We leave for future work including features of chemical bonds.

Table 3: Featurization used to embed atoms in Molecule-Augmented Attention Transformer.
Indices Description

0− 10 Atomic identity as a one-hot vector of B, N, C, O, F, P, S, Cl, Br, I, other
11− 16 Number of heavy neighbors as one-hot vector of 0, 1, 2, 3, 4, 5
17− 21 Number of hydrogen atoms as one-hot vector of 0, 1, 2, 3, 4

22 Formal charge
23 Is in a ring
24 Is aromatic

Distance calculation. The distance matrices are calculated from 3d conformers calculated using
UFFOPTIMIZEMOLECULE function from the RDKit package [Landrum, 2016], and the default
parameters (MAXITERS=200, VDWTHRESH=10.0, CONFID=−1, IGNOREINTERFRAGINTERAC-
TIONS=True).

C Experimental details

In this section we include details for experiments in Section 3.1.

• FreeSolv, ESOL. Regression tasks. Popular tasks for predicting water solubility in terms of
the hydration free energy (FreeSolv) and logS (ESOL).

• Blood-brain barrier permeability (BBBP). Binary classification task. The blood-brain
barrier (BBB) separates the central nervous system from the bloodstream.

• MetStabhigh, MetStablow. Binary classification tasks. The metabolic stability of a com-
pound is a measure of the half-life time of the compound within an organism. The com-
pounds for this task were taken from [Podlewska and Kafel, 2018].

• hERG, Estrogen Alpha, Estrogen Beta. Binary classification tasks. Often in drug discov-
ery, it is important that a molecule is not potent towards a given target. hERG is a gene
encoding a potassium channel present in heart muscle tissue. For these tasks, the compounds
with known activities towards the receptors were extracted from ChEMBL [Gaulton et al.,
2011] database and divided into active and inactive sets based on their reported inhibition
constant (Ki), being < 100 nM and > 1000 nM, respectively.

Table 4 shows hyperparameter ranges used in experiments for Molecule-Augmented Attention
Transformer. A short description of these hyperparameters is listed below:

• model dim – size of embedded atom features,

• model N – number of encoder module repeats (N in Figure 1),

• model h – number of molecule self-attention heads,

• model N dense – number of dense layers in the position-wise feed forward block (K in
Figure 1),

• lambda attention – self-attention weight λa,
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Table 4: Molecule-Augmented Attention Transformer hyperparameter ranges
parameters

batch size 16, 32, 64
learning rate 0.01, 0.005, 0.001, 0.0005, 0.0001
epochs 30, 100
model dim 32, 64, 128, 256, 512, 1024
model N 1, 2, 4, 6, 8
model h 1, 2, 4, 8
model N dense 0, 1, 2
lambda attention 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1
lambda distance 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1
model dense output nonlinearity ’tanh’, ’relu’
distance matrix kernel ’softmax’, ’exp’
model dropout 0.0, 0.1, 0.2
weight decay 0.0, 0.001, 0.01
optimizer ’transformer’, ’adam_anneal’, ’adam_anneal_v2’
aggregation type ’mean’, ’sum’
optimizer factor 1.0, 0.5, 0.1, 0.05, 0.01

• lambda distance – distance weight λd,
• model dense output nonlinearity – nonlinear function applied after all position-wise feed

forward layers,
• distance matrix kernel – function g used to transform the distance matrix D,
• model dropout – dropout applied after the embedding layer, position-wise feed forward

layers, and residual layers (before sum operation),
• weight decay – optimizer weight decay,
• optimizer – optimizer used to train the model,

– TRANSFORMER – optimizer introduced by Vaswani et al. [2017], we use the 30% of
all training steps as the optimizer warmup,

– ADAM_ANNEAL – Adam optimizer with linear annealing schedule,
– ADAM_ANNEAL_V2 – Adam optimizer in which the learning rate is multiplied by 0.1

after 70% of all training epochs,
• aggregation type – aggregation function used in the global pooling layer,
• learning rate – (only for the optimizers different than TRANSFORMER)
• optimizer factor – (only for the TRANSFORMER optimizer) the factor by which we multiply

the optimizer learning rate.

In our experiments, DeepChem [Ramsundar et al., 2019] implementation of baseline algorithms
(SVM, RF, GC, MPNN, Weave) was used. We used the same hyperparameters for tuning as were
used in DeepChem, having regard to their proposed default values.
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Table 5: SVM hyperparameter ranges
parameters

C 0.25, 0.4375, 0.625, 0.8125,
1., 1.1875, 1.375, 1.5625, 1.75,
1.9375, 2.125, 2.3125, 2.5, 2.6875,
2.875, 3.0625, 3.25, 3.4375, 3.625,
3.8125, 4.

gamma 0.0125, 0.021875, 0.03125,
0.040625, 0.05, 0.059375,
0.06875, 0.078125, 0.0875,
0.096875, 0.10625, 0.115625,
0.125, 0.134375, 0.14375,
0.153125, 0.1625, 0.171875,
0.18125, 0.190625, 0.2

Table 6: RF hyperparameter ranges
parameters

n estimators 125, 218, 312, 406, 500, 593,
687, 781, 875, 968, 1062,
1156, 1250, 1343, 1437, 1531,
1625, 1718, 1812, 1906, 2000

Table 7: GC hyperparameter ranges
parameters

batch size 64, 128, 256
learning rate 0.002, 0.001,

0.0005
n filters 64, 128, 192, 256
n fully connected nodes 128, 256, 512

Table 8: Weave hyperparameter ranges
parameters

batch size 16, 32, 64, 128
nb epoch 20, 40, 60, 80, 100
learning rate 0.002, 0.001, 0.00075, 0.0005
n graph feat 32, 64, 96, 128, 256
n pair feat 14

Table 9: MPNN hyperparameter ranges
parameters

batch size 8, 16, 32, 64
nb epoch 25, 50, 75, 100
learning rate 0.002, 0.001, 0.00075, 0.0005
T 1, 2, 3, 4, 5
M 2, 3, 4, 5, 6

Table 10: EAGCN hyperparameter ranges
parameters

batch size 16, 32, 64, 128, 256,
512

EAGCN structure ’concate’, ’weighted’
num epochs 100, 500, 1000
learning rate 0.01, 0.005, 0.001,

0.0005, 0.0001
dropout 0.0, 0.1, 0.3
weight decay 0.0, 0.001, 0.01, 0.0001
n sgc1 1 30, 60
n sgc1 2 5, 10, 15, 20, 30
n sgc1 3 5, 10, 15, 20, 30
n sgc1 4 5, 10, 15, 20, 30
n sgc1 5 5, 10, 15, 20, 30
n sgc2 1 30, 60
n sgc2 2 5, 10, 15, 20, 30
n sgc2 3 5, 10, 15, 20, 30
n sgc2 4 5, 10, 15, 20, 30
n sgc2 5 5, 10, 15, 20, 30
n den1 12, 32, 64
n den2 12, 32, 64
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D Toy task

Task description. The essential feature of Molecule-Augmented Attention Transformer is that it
augments the self-attention module using molecule structure. Here we investigate MAT on a task
heavily reliant on distances between atoms; we are primarily interested in how the performance
of MAT depends on λa, λd, λg that are used to weight the adjacency and the distance matrices in
Equation 2.

Naturally, many properties of molecules depend on their geometry. For instance, steric effect happens
when a spatial proximity of a given group, blocks reaction from happening, due to an overlap in
electronic groups. However, this type of reasoning can be difficult to learn based only on the graph
information, as it does not always reflect the geometry well. Furthermore, focusing on distance
information might require selecting low values for either λg or λa (see Figure 1).

To illustrate this, we designed a toy task to predict whether or not two substructures are closer to
each other in space than a predefined threshold; see also Figure 2a. We expect that MAT will work
significantly better than a vanilla graph convolutional network if λd is tuned well.

Experimental setting. We construct the dataset by sampling 2677 molecules from PubChem [Kim
et al., 2018], and use 20 Å threshold between -NH2 fragment and tert-butyl group to determine the
binary label. The threshold was selected so that positive and negative examples are well balanced.
All the other details are reported in the Supplement.

t-butyl

amine

(a) The toy task is to predict whether two substructures
(-NH2 fragment and tert-butyl group) co-occur within
given distance.

0.0 0.2 0.4 0.6 0.8 1.0
 distance

0.75

0.80

0.85

0.90

0.95
AU

C

a=0
a = g

g=0

(b) Molecule-Augmented Attention Transformer per-
formance on the toy task as a function of λd, for dif-
ferent settings of λg and λa.

Figure 2: MAT can efficiently use the inter-atomic distances to solve the toy task (see left). Addition-
ally, the performance is heavily dependent on λd, which motivates tuning λ in the main experiments
(see right).

Results. First, we plot Molecule-Augmented Attention Transformer performance as a function of
λd in Figure 2b for three settings of λ: λa = 0 (blue), λa = λg (orange), and λg = 0 (green). In all
cases we find that using distance information improves the performance significantly. Additionally,
we found that GCN achieves 0.93 AUC on this task, compared to 0.98 by MAT with λd = 1.0. These
results both motivate tuning λ, and show that MAT can efficiently use distance information if it is
important for the task at hand.

Further details. The molecules in the toy task dataset were downloaded from PubChem. The
SMARTS query used to find the compounds was (C([C;H3])([C;H3])([C;H3]).[NX3H2]). All
molecules were then filtered so that only those with exactly one tert-butyl group and one -NH2

fragment were left. For each of them, five conformers were created with RDKit implementation of
the Universal Force Field (UFF).

The task is a binary classification of the distance between two molecule fragments. If the distance
between -NH2 fragment and tert-butyl group is greater than a given threshold, the label is 1 (0
otherwise). As the distance we mean, maximal Euclidean distance between the closest heavy atoms
in these two fragments across calculated conformers. We used 20 Å as the threshold as it leads to
a balanced dataset. There are 2677 compounds total from which 1140 are in a positive class. The
dataset was randomly splitted into training, validation, and test datasets.
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In experiments the hyperparameters that yielded promising results on our datasets were used (listed
in Table 11). The values of λ parameters were tuned, and their scores are shown in Figure 2b. All
three λ parameters (λd, λg , λa) sum to 1 in all experiments.

To compare our results with a standard graph convolutional neural network, we run a grid search over
hyperparameters shown in Table 12. The hyperparameters for which the best validation AUC score
was reached are emboldened, and their test AUC score is 0.925± 0.006.

Table 11: MAT hyperparameters used.
parameters

batch size 16
learning rate 0.0005
epochs 100
model dim 64
model N 4
model h 8
model N dense 2
model dense output nonlin-
earity

’tanh’

distance matrix kernel ’softmax’
model dropout 0.0
weight decay 0.001
optimizer ’adam_anneal’
aggregation type ’mean’

Table 12: Hyperparameters used for tuning GC.
parameters

batch size 16, 32, 64
learning rate 0.0005
epochs 20, 40, 60, 80, 100
n filters 64, 128
n fully connected nodes 128, 256

E Attention analysis

As demonstrated in the previous sections, MAT is able to utilize efficiently the additional knowledge
stored in the distances. In this section, we run additional analysis.

First, we interpret the chemical function of each self-attention head on a random molecule from the
BBBP dataset. Figure 3 visualizes each head in the third layer of MAT. Indeed, the self-attention
outputs from each head are noticeably different, and seem to be interpretable. For instance, we see
that head 4 puts large weight between the nitrogen atoms in the imidazole ring and the oxygen atoms
of the oxo groups.
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Figure 3: Attention strength in each of the 8 heads in the third layer of MAT (left), for a random
molecule from BBBP (right).

To ensure that this is consistent across the dataset we calculate two statistics on the BBBP test set.
We manually selected three pairs of heads and the atomic patterns: (i) head 4 from layer 0 that seems
to focus on the non-carbon atoms connected by only one bond; (ii) head 5 from layer 3 that seems to
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Table 13: Selected self-attention heads in MAT implement chemically interpretable functions. Each
column represent one of three selected attention heads, and each row represent statistics for the
selected atomic pattern.

Head1 Head2 Head3

Selected 5.23 1.24 1.27
Baseline 0.41 0.68 0.60

Head1 Head2 Head3

Percentage 81,3% 72,0% 68,7%

focus on the carbon atoms within ring structures; (iii) head 3 from layer 2 that seems to focus on the
positions of electronegative atoms, but not nitrogen or oxygen.

For each head h and its associated atomic pattern ah (e.g. “atom in a carbon ring“) let h(ah) denote
the overall attention strength assigned by the head h to the given atomic pattern a. We report h(ah)
in Table 13 (left) h(ah) for the three selected heads and atomic patterns pairs, and compare to h(a′)
for a random atomic pattern a′. In Table 13 (right) we report how often h(ah) is highest for all atoms
a in the molecule. Both statistics corroborate that these attention heads implement a chemically
interpretable function.

Below we also include a similar analysis of individual self-attention heads for a random molecule
from the ESOL dataset, in Figure 5 to Figure 10. We also include all layers for the random molecule
from the BBBP dataset in Figure 11 to Figure 14.

We plot all the self-attention heads for layers 1 to 6 in Figure 5 to Figure 10. The attention analysis
shows the weights the neural networks puts on various correlations between atom types and positions.
For example, layer 0 of head 0 shows, that the importance is put on the relative positions of the
carbon atoms towards the nitrogen atoms in the thiobarbituric group. What is more, within the same
layer, we can see that the network notices the relative positions of nitrogen and oxygen atoms, which
contribute significantly to the solubility of the molecule. Within other layers, we can also notice that
the network takes into consideration the positions of the aliphatic “tails”, both between each other
and towards the thiobarbituric moiety (Head 0, layer 3). Since the transformer also uses the distance
matrix based on 3D coordinates, the acknowledgement of the positions of said aliphatic chains may
contribute to the superior performance of the MAT algorithm in this particular case.
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(b) ESOL

Figure 4: The molecules we analyze.
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Figure 5: ESOL layer 1
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Figure 6: ESOL layer 2
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Figure 7: ESOL layer 3
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Figure 8: ESOL layer 4
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Figure 9: ESOL layer 5
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Figure 10: ESOL layer 6
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Figure 11: BBBP layer 1
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Figure 12: BBBP layer 2
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Figure 13: BBBP layer 3
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Figure 14: BBBP layer 4
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Figure 15: Two sample molecules from the BBBP test dataset, together with self-attention weights of
three interesting attention heads (i) head 4 from layer 0; (ii) head 5 from layer 3; (iii) head 3 from
layer 2.
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