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Abstract

In addition to providing high-profile successes in computer vision and natural
language processing, neural networks also provide an emerging set of techniques for
scientific problems. Such data-driven models, however, typically ignore physical
insights from the scientific system under consideration. We investigate whether it
is possible to include physics-informed prior knowledge for improving the model
quality (e.g., generalization performance, or robustness in the presence of noisy
data). To that extent, we focus on the stability of an equilibrium, one of the most
basic properties a dynamic system can have, via the lens of Lyapunov analysis.

1 Introduction

Many problems in science and engineering can be modeled as a dynamical system. Examples include
physical fluid flows, atmospheric-ocean interactions, neurophysiological responses, and economic
and financial time series, to name only a few. These systems often exhibit rich dynamics that give
rise to multiscale structures, in both space and time. Since these systems are typically identified
using data, machine learning methods are increasingly of interest for these problems. Deep learning
and related neural network techniques, in particular, provide a useful framework for modeling such
systems. The merits of deep learning have been demonstrated for scientific applications, in particular
for prototypical fluid flow applications, such as fluid flow modeling [12, 15, 7, 11, 9, 23, 10], flow
reconstruction [5, 4], flow control and prediction [13, 19, 20, 17, 16], and flow simulation [8, 21, 22].

Thus far, however, neural network models for scientific applications largely ignore knowledge of
physics and other domain-specific aspects of the system under consideration. As a consequence,
this domain-agnostic learning approach can lead to models that are brittle. One would hope that
domain-specific assumptions can improve the algorithmic performance and predictive accuracy of
scientific-based machine learning models. For example, physically-informed priors can introduce
some degree of stability and robustness, in that a small change of the input will not dramatically
change the output of the learning algorithm [24, 3, 25].

Motivated by this idea, we design stability-preserving models for fluid flow prediction. This is a
prototypical scientific problem with a dynamical systems interpretation. More concretely, we learn
an end-to-end mapping between the input and target fluid flow snapshot, where the mapping is
represented as an autoencoder, with an additional component that attempts to learn the dynamics of
the underlying physical process. To illustrate the promise of the method, we show results for simulated
and real-world problems, including laminar flow and climate problems, and we demonstrate the use of
this physics-informed approach both for improved model training and for improved a posteriori model
analysis. For model training, we show that constraining the empirical risk minimization problem by
using a Lyapunov stability-promoting prior (a physical-meaningful regularization mechanism that
corresponds to properties of the physical system being modeled) leads to better training and helps to
improve the generalization performance, compared to physics-agnostic models.
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2 Problem setup

Modeling nonlinear dynamics can be challenging and thus often linear time-invariant approximations
of nonlinear systems are used. These take the form

xt+1 = Axt + ηt, t = 0, 1, 2, . . . , (1)

where A : Rn → Rn denotes a linear map. The perturbation ηt might incorporate modeling errors,
such as unmodeled dynamics or discretization errors. If ηt is small, then the dynamics simply specify
here that the state xt+1 depends just on the value of the previous state xt, i.e., given the rule A, the
state xt provides all information needed for predicting the future state at xt+1.

However, despite the simplicity of this rule, it often turns out to be a challenge to find an estimate for
A. This is because, in a data-driven setting, we only have access to (high-dimensional) observations

yt = G(xt) + ξt, t = 0, 1, 2, . . . , T, (2)

where the function G : Rn → Y ⊆ Rm maps the state xt to a subspace Y , and the variable ξt
represents measurement errors. For example, one may think of the function G as a sensor which
collects measurements at time t. We assume that the dynamics of the flow are low-dimensional, in
the sense that G(xt), t = 1, 2, . . . , lies on an n-dimensional manifold embedded in Rm [2]. Further,
we assume that the function G has an inverse, which implies that a single data-point yt ∈ Y is enough
to uniquely determine the corresponding state xt.

3 Autoencoder-type models for fluid flow prediction

Given a sequence of observations y0,y1, . . . ,yT ∈ Rm for training, the objective of this work is to
learn a model which maps the snapshot yt to yt+1. The model is composed of three functions

ŷt+1 = Φ ◦Ω ◦Ψ(yt), (3)

where Φ approximates G, Ω approximates A, and Ψ approximates G−1. The design architecture of
the model is sketched in Figure 1. The encoder Ψ : Y → Rn maps the high-dimensional snapshot
yt to a low-dimensional feature space, where n � m. The encoder should be designed so that it
preserves the coherent structure of the fluid flow, while suppressing uninformative variance (fine
scale features) in the data. The dynamics Ω : Rn → Rn evolves the state in time, modeled as

zt+1 = Ωzt. (4)

where zt = Ψ(yt). Finally, the decoder Φ : Rn → Y maps the low-dimensional features (evolved in
time) back to the high-dimensional measurement space.

During inference time we can obtain predictions ŷt for an initial point y0 by composing the learned
model t-times. This leads to the following expansion

ŷt = Φ ◦Ω ◦Ψ ◦Φ ◦Ω ◦Ψ ◦Φ ◦Ω ◦Ψ ◦ ... ◦Φ ◦Ω ◦Ψ(y0). (5)

If the model obeys the assumption that Ψ approximates G−1, then we have that I ≈ Ψ ◦Φ, where
I ∈ Rn×n denotes the identity. Thus, Eq. (5) reduces approximately to

ŷt ≈ Φ ◦Ω ◦Ω ◦Ω ... ◦Ω ◦Ψ(y0) = Φ ◦Ωt ◦Ψ(y0). (6)

encoder dynamics decoder

skip connection

Figure 1: Design architecture of the autoencoder-type flow prediction model. The skip connection
allows one to enforce the identity-persevering constraint posed on the encoder. This constraint is
important, because we aim to design the model so that only Ω captures the dynamics. Note, we do
not train Ω with the identity map, i.e., Ω is a discrete-time flow map.
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In order for this to happen, we enforce that the function Ψ acts as an (approximate) inverse function
for Φ, i.e., qt ≈ Ψ ◦Φ(qt). This is achieved by introducing an additional penalty

min
1

T − 1

T−1∑
t=0

‖yt+1 −Φ ◦Ω ◦Ψ(yt)‖22 + λ‖qt −Ψ ◦Φ(qt)‖22, (7)

where λ is a tuning parameter that balances the two objectives. The variable qt denotes carefully
chosen test points, which we set in our experiments to the encoded flow field qt = Ψ(yt) at time t.

4 Lyapunov stability as a tool for physics-informed learning

Here, we focus on Lyapunov stability, which describes a fundamental property of the dynamic system
in Eq. (1). We assume that the dynamic system has an equilibrium at the origin. This means that if
the system is initialized at the origin (x0 = 0), its state will remain at the origin for all times (that
is, xt = 0 for all t = 1, 2, . . . provided that ηt = 0 for all t = 1, 2, . . . ). We can then ask ourselves
what happens when the system is initialized in a region close to the the origin. Will the resulting
trajectories remain close to the equilibrium for all times, or will they drift away? If the former is
true, the origin of the dynamic system is said to be stable. Compared to the other notions of stability
mentioned above, Lyapunov stability is therefore a statement about the robustness of trajectories with
respect to small perturbations of their initial conditions about the given equilibrium.

Given that (1) is stable, we are interested in learning a model (4) that is likewise stable. Therefore,
we design a stability-promoting penalty based on Lyapunov’s method. More precisely, we impose
that the symmetric matrix P, defined by

Ω>PΩ−P = −I, (8)

is positive definite. We design a prior that promotes Lyapunov stability by penalizing eigenvalues
of P, denoted as p, that have small negative values. Such a prior can take various forms, but the
following choice works particularly well in our experiments:

ρ(p) :=

{
exp

(
− |p−1|γ

)
if p < 0

0 otherwise,
(9)

where γ is a tuning parameter. The physics-informed autoencoder preserves stability if κ is chosen
large enough, trained by minimizing the following objective

min
1

T − 1

T−1∑
t=0

‖yt+1 −Φ ◦Ω ◦Ψ(yt)‖22 + λ‖qt −Ψ ◦Φ(qt)‖22 + κ
∑
i

ρ(pi). (10)

5 Experiments and discussion

Here, we provide empirical results, demonstrating the generalization performance, by studying a
laminar flow and a real-world climate problem. We use shallow architectures which are composed of
only a few linear layers, connected by non-linear activation functions. These architectures provide
an excellent parsimonious-predictability trade-off for our fluid flow prediction problems. Shallow
networks have the advantage that they are scalable, fast to train, and easy to tune [4].

The extend version of this paper (https://arxiv.org/abs/1905.10866) provides additional
results, specifics of the network architecture and details about the tuning parameters.

5.1 Flow behind a cylinder

As a canonical example, we consider a downsampled fluid flow behind a cylinder, which is character-
ized by a periodically shedding wake structure [14]. The dataset comprises 250 fluid flow snapshots
in time, each consisting of 64× 64 spatial grid points. We split the sequence into a training (first 100
snapshots) and test set (remaining 150 snapshots).

We evaluate the quality of the physics-agnostic model (minimizing (7)) and the physics-aware model
(minimizing (10)) by studying their ability to estimate future fluid flow fields. For both models, we
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expect that the extrapolation in time will eventually break down, but we expect that there will be a
larger range of time over which the extrapolation is valid for models that are designed to have the
stability properties of the underlying physical system. The physics-aware model shows an improved
generalization performance, when averaged over 30 initial conditions, as shown in Figure 2. Further,
it can be seen that the stability-promoting prior reduces the prediction uncertainty.

Of course, one can also fiddle around with the amount of weight decay until all eigenvalues of Ω
have magnitude less than one (i.e., increasing the amount of weight decay shrinks the eigenvalues
towards the origin). However, a physics-informed prior appears to be a more elegant solution.

5.2 Sea surface temperature of the gulf of Mexico

Next, we model the sea surface temperature (SST) of the the Gulf of Mexico as a real-world example
to demonstrate the performance of our physics-informed autoencoder. The National Oceanic &
Atmospheric Administration (NOAA) provides daily sea surface temperatures for the last 26 years.
We consider the daily SSTs for the Gulf of Mexico over a period of six years (2012-2018). The data
comprise 2190 snapshots in time with spatial resolution of 64 × 64. We split the sequence into a
training (first 1825 snapshots) and test set (remaining 365 snapshots).

Again, the physics-aware model shows an improved generalization performance for a larger range of
time, as shown in Figure 3. The prediction error is overall substantially larger than in the previous
example. This is because predicting the fluctuations (in this non-toy model) is a challenging problem,
since complex ocean dynamics lead to rich flow phenomena, featuring various seasonal fluctuations.
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Figure 2: Summary of results for the flow behind a cylinder. The physics-aware model outperforms
the physics-agnostic model for predicting future flow fields over a time horizon of 120 snapshots. The
results are averaged over 30 initial conditions and the error bands show the 5% and 95% percentile.
The plots (b) and (c) show the complex eigenvalues of Ω, which correspond to the models in (a).
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Figure 3: Summary of results for the SST data. The physics-informed model shows a better
generalization performance over a prediction horizon of 60 days. The results are averaged over 30
initial conditions and the error bands show the 5% and 95% percentile. The plots (b) and (c) show
the complex eigenvalues of Ω, which correspond to the models in (a).
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6 Conclusion

Neural networks have been shown to be a highly valuable tool for dynamical modeling, prediction
and control of fluid flows. Surprisingly, these data-driven models have the ability to learn implicitly
some of the physical properties (encoded in the data) reasonably well, if a sufficient amount of data is
provided for training. However, often the amount of data is limited, and one has knowledge about
the data generation mechanisms. In this case, physics-informed learning might help to improve
considerably the generalization performance. To accomplish this, we introduced a method for training
autoencoders that preserve Lyapunov stability. This simple, yet effective, approach of including a
physics-informed stability-enhancing prior into the learning process shows a substantial performance
boost for several fluid flow prediction tasks. A minor disadvantage is that we need an additional
tuning parameter, but we have observed that tuning this relatively-robust parameter is not a problem.
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