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Abstract

We introduce a metric for collider data, synthesizing ideas from optimal trans-
port and perturbative quantum field theory. The metric is the “work” required to
rearrange one collider event into another, based on the earth mover’s distance. En-
dowing collider data with a metric allows for distance-based unsupervised learning
techniques to be used and can provide a simple alternative to sophisticated machine
learning approaches. We use this metric to identify the most representative or
anomalous events, to visualize the space of events, and to quantify the dimensional-
ity of the dataset. We apply the metric to jets, sprays of particles from high-energy
quarks and gluons, using public collider data from the CMS experiment at the
Large Hadron Collider. We also make the processed jet dataset publicly available
to empower future jet studies with open collider data.

1 Introduction

High energy proton collisions at the Large Hadron Collider (LHC) give rise to thousands of outgoing
particles. There has been growing interest in applying sophisticated machine learning methods to
collider data directly at the level of particles for tasks such as classifying the initiating particles in an
event [1, 2, 3] or mitigating the effects of pileup [4]. Despite these developments in machine learning
for collider physics, there remains little middle ground between traditional collider observables and
sophisticated machine learning models. For instance, a notion of similarity or distance between
collider events has yet to be developed to allow for simple metric-based unsupervised techniques to
be applied. A robust notion of the “distance” between collider events would unlock new ways to
probe events and significantly expand our ability to explore collider data.

Here, we present a metric for the space of collider data [5] based on ideas from optimal transport,
particularly the earth mover’s distance [6, 7, 8]. We apply this metric to public collider data from the
CMS experiment [9]. In particular, we focus on applying various unsupervised learning techniques to
jets. Jets are collimated sprays of particles that arise from the fragmentation and hadronization of
outgoing high energy quarks and gluons. We use this metric to identify the most representative jets
using the k-medoids algorithm, to identify the most anomalous jets in a dataset, to visualize the entire
space of jets at once, and to quantify the fractal dimensionality of the dataset. Finally, we can relate
this metric with origins in optimal transport to rich ideas from perturbative quantum field theory. We
make our dataset of jets processed from CMS Open Data publicly available for reproducibility and to
enable future jet studies with public collider data.

2 Dataset

CMS Open Data The CMS experiment [10] at the LHC has taken the unprecedented step of
releasing public research-grade collider data [11], beginning in November 2014. These data releases
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have enabled new exploratory studies of jets and jet substructure [12, 13], new physics searches [14],
and machine learning studies on simulated events [15, 16, 17].

We make use of the CMS 2011A Jet primary dataset [18] and associated Monte Carlo files [19, 20, 21,
22, 23, 24, 25], which contain generated events before and after GEANT4 detector simulation. The
jets considered in this study are “AK5” anti-kT jets [26] with radius parameter R = 0.5, operationally
defined by clustering the particles in an event with a hierarchical agglomerative clustering algorithm.
Jets with transverse momenta pT ≥ 375 GeV are kept based on the firing of the Jet300 trigger. We
established that essentially all such jets seen by the CMS detector during this period of data taking
are kept in the dataset.

Jet Dataset Our complete jet dataset processed from the CMS Open Data is available on the
Zenodo platform, both for jets in data [27] as well as the associated simulated datasets [28, 29, 30,
31, 32, 33, 34, 35]. The dataset contains a total of 1,785,625 jets recorded by CMS, which yields
about 40,000 jets after the additional kinematic jet selections described below.

Each jet is stored as a list of particle candidates reported by CMS, with transverse momentum pT ,
rapidity y, azimuthal angle φ, mass m, particle identification code, and vertex information stored for
each particle. From this jet dataset, we further restrict to jets with transverse momenta pT ∈ [399, 401]
GeV, of “medium” quality, and with pseudorapidity |η| < 1.9 to be in the tracking region of the
detector, where charged particles can be accurately vertexed. Charged particles from pileup collisions,
namely those other than the collision of interest, are identified with vertex information and removed
using the charged hadron subtraction procedure [36]. Further, we restrict to charged particles (tracks)
with pT > 1 GeV to minimize the impact of detector resolution and neutral pileup. Jets are centered
and rotated to vertically align their principal component in the rapidity-azimuth plane. The jets are
finally rescaled to have their constituent transverse momenta sum to 400 GeV to highlight the jet
substructure.

Two example jets from the dataset are shown in Figs. 1a and 1b.

3 Method

We characterize a jet J by its distribution of energy flowing into the detector. Specifically, we focus
on the distribution ρ of transverse momentum in the rapidity-azimuth (y, φ) plane:

ρ(y, φ) =
∑
j∈J

pT,jδ(y − yj)δ(φ− φj), (1)

where y and φ are coordinates which parameterize the detector cylinder.

The earth (or energy) mover’s distance (EMD) between two jets I and J is then:

EMD(I,J ) = min
{fij}

∑
i∈I

∑
j∈J

fijθij , (2)

where θ2ij = ((yi − yj)2 + (φi − φj)2)/R2 is a rapidiy-azimuth distance between particles, with
R = 0.5 being the jet radius in our case. Here, fij is the amount of energy moved from particle i in
jet I to particle j in jet J , with the natural constraints:

fij ≥ 0,
∑
i∈I

fij = pT,j ,
∑
j∈J

fij = pT,i,
∑
i∈I

∑
j∈J

fij =
∑
i∈I

pT,i =
∑
j∈J

pT,j . (3)

The EMD is a true metric in that it is symmetric, non-negative, and satisfies the triangle inequality.
Jets with different total transverse momenta can be compared by slightly modifying this definition,
which we avoid here by rescaling them to 400 GeV to focus on the jet substructure. Finding the
minimum fij in Eq. 2 subject to the constraints in Eq. 3 is an optimal transport problem which can be
solved via the network simplex algorithm, where we use the python optimal transport library [37].

The optimal transportation plan between two example jets in the dataset is shown in Fig. 1c.

It is worth remarking that this metric, which has been used extensively for image retrieval and
point cloud comparisons, is also deeply connected to core ideas in perturbative quantum field theory.
Infrared and collinear (IRC) safety is a key concept that guarantees that an observable is perturbatively
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Figure 1: (a,b) Two jets from the CMS Open Data, with the size of each symbol indicating the particle
transverse momentum and the style indicating the charge. Charged pileup particles are indicated by
gray crosses and removed from the jet. (c) The two jets represented as energy distributions, along
with the optimal transportation plan to rearrange one jet into the other, with the intensity of each line
corresponding to the transported energy between the particles. The two jets are 159.3 GeV apart.

finite and calculable. An observable is IRC safe if it is insensitive to the addition of a zero-energy
particle and the collinear splitting of one particle into two. The jet energy flow in Eq. 1 is manifestly
IRC safe, and jets which are close in the EMD are guaranteed to be close in any IRC safe observable.

4 Results

Representative Jets Endowing the space of collider events with a metric unlocks a number
of unsupervised learning techniques. We begin with finding the k-medoids, namely the most
representative jets in the dataset. Namely, we want to find k jets {K1, . . . ,Kk} minimizing the
distance of the dataset to those jets:

Vk =
1

N

N∑
i=1

min{EMD(Ji,K1), . . . ,EMD(Ji,Kk)}. (4)

We use the approximation algorithm in the pyclustering python package [38] to find the k medoids
in this work. In Fig. 2, we visualize the physics behind distributions of jet substructure observables
by finding the 4-medoids in each histogram bin. We focus on the invariant mass of the jet and the
image activity: the number of pixels in a 33 × 33 image that account for 95% of the transverse
momentum. This visualization highlights for instance that the mass of a jet is dominantly generated
by the formation of an additional hard prong. We also find and display the 25-medoids of the entire
dataset in Fig. 4b, which we discuss more below. More broadly, this notion of representative events
may be useful for “triggering” or robust compression of collider datasets.

Anomaly Detection Model-agnostic and data-driven anomaly detection techniques have been of
recent interest in collider physics, motivated in part due to the lack of new physics discoveries at the
LHC using targeted methods. We can use the EMD to determine which jets are most anomalous,
by finding the ones farthest from the rest of the dataset. We quantify this by computing the mean
distance Q of each jet I to all the jets in the dataset:

Q(I) =
1

N

N∑
j=1

EMD (I,Jj) . (5)

Small values of Q correspond to jets with typical substructure, and large values of Q correspond to
anomalous jets far from most jets in the dataset. In Fig. 3, we show the three most anomalous jets in
the dataset according to Eq. 5. We can see that indeed they have uncommon three-pronged topologies,
indicating that this measure of distance indeed captures aspects of uncommon substructure.
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Figure 2: Distributions of two jet substructure observables (a) the jet mass and (b) the jet image
activity in the CMS Open Data, showing the 4-medoids in each histogram bin.
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Figure 3: Event displays of the three most anomalous jets in our CMS Open Data sample based on
their mean distance to the dataset. Jets with more exotic, three-pronged substructure emerge as the
most anomalous.

The Space of Jets We can also visualize the entire space of jets from the CMS Open Data using
t-distributed Stochastic Neighbor Embedding (t-SNE) [39], which seeks to find a low-dimensional
embedding that respects the distance between points. Shown in Fig. 4a is the t-SNE embedding of
the dataset using the implementation in scikit-learn [40], with example jets distributed throughout
the embedding. The two-dimensional embedding includes regions of one- and two-pronged jets,
with varying energy sharing fractions between the prongs. Also shown in Fig. 4b is the embedding
together with the 25-medoids of the dataset, which can be seen to “tile” the space.

Correlation Dimension The dimensionality of the space of jets can be probed solely using pairwise
distances between points alone. To that end, we use the notion of fractal dimension, specifically the
correlation dimension [41, 39]:

dim(Q) = Q
∂

∂Q
ln

∑
1≤k<`≤N

Θ[EMD(Jk,J`) < Q], (6)

where Θ is a step function indicating whether jet k is within EMD Q of jet `. The correlation
dimension is a scale-dependent quantity, with different physics dominating at different energy scales
Q. Fig. 4c shows the correlation dimension in the CMS Open Data, compared to Monte Carlo samples
before and after detector simulation. We see an increase of dimensionality with decreasing energy
scale. This behavior can also be understood and computed in perturbative quantum chromodynamics,
which we will develop and showcase in future work.
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Figure 4: (a,b) A two-dimensional t-SNE embedding of jets from the CMS Open Data, with the
gray contours indicating the density of jets in the space. Overlaid are (a) example jets are shown
uniformly throughout the space, colored according to their jet mass fractile in the dataset, and (b) the
25-medoid jets of the dataset, sized with area proportional to the number of jets nearest to them. (c)
The correlation dimension of the CMS Open Data, together with Monte Carlo samples before and
after detector simulation.

5 Conclusion

Data-driven methods that circumvent a reliance on simulated truth information or specific new physics
models are of growing interest for collider physics. To enable the use of many unsupervised learning
techniques at the LHC, we have established a new metric for collider data. We showcased that metric
on jets from public collider data from the CMS experiment. Applications beyond those discussed
here can be built using this metric, such as k-nearest neighbors jet classifiers or clustering of collider
events. We have released our full processed jet dataset to facilitate such future explorations.
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