
Scalable Extreme Deconvolution

James A. Ritchie
School of Informatics

University of Edinburgh
james.ritchie@ed.ac.uk

Iain Murray
School of Informatics

University of Edinburgh
i.murray@ed.ac.uk

Abstract

The Extreme Deconvolution method fits a probability density to a dataset where
each observation has Gaussian noise added with a known sample-specific covari-
ance, originally intended for use with astronomical datasets. The existing fitting
method is batch EM, which would not normally be applied to large datasets such as
the Gaia catalog containing noisy observations of a billion stars. We propose two
minibatch variants of extreme deconvolution, based on an online variation of the
EM algorithm, and direct gradient-based optimisation of the log-likelihood, both of
which can run on GPUs. We demonstrate that these methods provide faster fitting,
whilst being able to scale to much larger models for use with larger datasets.

1 Introduction

Extreme deconvolution is a method that fits Gaussian Mixture Models (GMMs) to noisy data where
we know the covariance of the Gaussian noise added to each sample [3]. The method was originally
developed to perform probabilistic density estimation on the dataset of stellar velocities produced by
the Hipparcos satellite [13]. The Hipparcos catalogue consists of astrometric solutions (positions
and velocities on the sky) and photometry (light intensity) for 118,218 stars, with associated noise
covariances provided for each entry.

The successor to the Hipparcos mission, Gaia, aims to produce an even larger catalogue, with entries
for an estimated 1 billion astronomical objects [17]. Previous work using an extreme deconvolution
model on the Gaia catalogue worked with a subset of the data and restricted the number of mixture
components, but the intention is to fit models with the full dataset [1]. The existing extreme
deconvolution algorithm makes a full pass over the dataset before it can update parameters, and the
reference implementation requires all the data to fit in memory. To fit such large datasets in reasonable
time, we would normally use stochastic or online methods, with updates based on minibatches of
data to make the methods practical on GPUs [2].

In this work, we develop two minibatch methods for fitting the extreme deconvolution model based on
1) an online variation of the Expectation-Maximisation (EM) algorithm, and 2) a gradient optimizer.
Our implementations can run on GPUs, and provide comparable density estimates to the existing
method, whilst being much faster to train.

2 Background

The aim of extreme deconvolution is to perform density estimation on a noisy d-dimensional dataset
{xi}Ni=0, where xi was generated by adding zero-mean Gaussian noise εi with known per-datapoint
covariance Si to a projection Ri of a true value vi,

xi = Rivi + εi, εi ∼ N (0, Si). (1)

Second Workshop on Machine Learning and the Physical Sciences (NeurIPS 2019), Vancouver, Canada.

We assume that vi can be modelled by a mixture of Gaussians with K components,

p(vi | θ) =
K∑
j

αj N (v |mj , Vj), θ = {αj ,mj , Vj}Kj=1, (2)

parameterised by mixture weight αj , mean mj and covariance Vj . As the noise model is Gaussian
and the model of the underlying density is a mixture of Gaussians, the probability of xi is also a
Gaussian mixture. The total log-likehood of the model is

L(θ) =
N∑
i

log

K∑
j

αj N (xi | Rimj , Tij), Tij = RiVjR
T
i + Si. (3)

Missing data can be handled either by making Ri rank-deficient, or by setting elements of the
covariance matrix Si to very large values.

3 Methods

3.1 Minibatch Expectation-Maximisation

The original method of fitting the extreme deconvolution model used a modification of the Expectation-
Maximisation (EM) algorithm for mixture models [5]. Here we describe a minibatch version of
this algorithm based on Cappé and Moulines [4]’s online EM algorithm for latent data models. At
each iteration t, we compute the sufficient statistics of the latent data vi for each component j in the
minibatch of size M , using our current estimate of the parameters,

rij =
αj N (xi | Rimj , Tij)∑
k αkN (xi | Rimk, Tik)

, bij = mj+VjR
T
i T

−1
ij (xi−Rimj), Bij = Vj−VjRT

i T
−1
ij RiVj .

(4)
The rij term is the posterior probability of datapoint xi coming from component j. The bij and Bij

terms result from the fact that xi and vi are jointly Gaussian, so the distribution of vi conditioned
on xi is also Gaussian with mean bij and covariance Bij . The expected sufficient statistics are then
summed together over the minibatch,

qjt =
∑
i

rijt, sjt =
∑
i

rijtbijt, Sjt =
∑
i

rijt[bijtb
T
ijt +Bijt]. (5)

Stochastic estimates φ̂jt of the sums of sufficient statistics over the whole dataset are then updated
with a sufficiently small step size λ,

φ̂jt = (1− λ)φ̂j(t−1) + λφjt, φjt = {qjt, sjt, Sjt}, φ̂jt = {q̂jt, ŝjt, Ŝjt}. (6)

Finally, we normalise the updated sums of expected sufficient statistics to get updated estimates of
the parameters,

αj =
q̂jt
M
, mj =

ŝjt
q̂jt
, Vj =

Ŝjt

q̂jt
−mjm

T
j . (7)

This procedure is repeated with new randomly-ordered minibatches until convergence. If we set λ = 1
and replace each minibatch with the entire dataset, then the update corresponds to the original batch
fitting method. Numerically however, the update for Vj , as written in (7), is inadvisable compared
to the batch update given in [3]. There is likely to be catastrophic cancellation if the variances of
the components are small relative to the means, especially if single precision floats are used, as is
standard with GPU computation. In Appendix A we show how the minibatch version of this update
can be rewritten in a more numerically stable form.

3.2 Stochastic Gradient Descent

An alternative to EM-based methods is to optimise the log-likelihood directly. The optimization is
constrained, because the mixture weights aj are positive and sum to 1, and the covariances Vj are
positive definite. Directly fitting the log-likelihood with unconstrained gradient-based optimisers

2

10
1

10
2

Time-scaled Epoch

28

27

26

25

A
vg

. L
og

-li
ke

lih
oo

d

64 128 256 512
Mixture Components K

0

200

400

Ti
m

e
(m

in
ut

es
)

Existing EM
Minibatch EM
SGD

Figure 1: Left: Average training log-likelihood as a function of training on the Gaia subset for models
with K = 256. Epochs rescaled by average training time. Error bars not visible. Right: Training
time as a function of mixture components K. Error bars indicate ± 2 standard deviations.

requires a transformation of the parameters to remove the constraints [19]. The mixture weights αj

can be parameterised by taking the softmax of an unconstrained vector z, and the covariances Vj
represented by its lower triangular Cholesky decomposition Lj , where the diagonal elements qq of
Lj are constrained positive by taking the exponential of unconstrained elements L̃q ,

αj =
ezj∑K
k=1 e

zk
, Vj = LjL

T
j , (Lj)qq = exp(L̃q). (8)

Having removed the constraints, we can optimise the likelihood using any standard minibatch
gradient-based optimiser.

For a standard Gaussian mixture model, gradient based optimization has a scaling advantage over EM.
There is no need to form the D×D covariance matrix Vj , since the Gaussian density can be evaluated
directly from the Cholesky factor Lj in O(D2), whereas an EM update is O(D3). Unfortunately
SGD updates are alsoO(D3) for the extreme deconvolution model, as we need to form the covariance
Tij for each datapoint.

4 Experiments

We implemented both minibatch approaches in PyTorch, and compared against the reference imple-
mentation from Bovy et al. [3]. To evaluate each method, we used a random sample of rows from the
Gaia DR2 source table [18]. We selected the 5 primary astrometric features, along with the BP-RP
colour and mean magnitude in the G-band. In total there were 2 million rows. Where data were
missing, we set the field to zero and the noise variance to a large value. We set the projection Ri to
the identity matrix for every sample. This preliminary study uses only a small fraction of the full
dataset size, but this allows us to fit the training data into memory, a requirement for use with the
original implementation of extreme deconvolution. We used a range of mixture component sizes K.
In practice we would want to select a value of K by cross-validation.

The existing EM method ran on CPU, whilst the minibatch EM and SGD methods ran on GPU. While
the absolute times depend strongly on hardware and fine implementation details, they give a sense of
the sort of times possible on current workstations, and the relative times across model sizes illustrate
how the methods scale. We used a validation set comprising 10% of the rows when developing our
experiments. Final model performance was evaluated on a different held-out test set also comprising
10% of the rows at the last stage, with no parameter selection or development done based on this set.
Details required for reproducibility are provided in Appendix B.

Table 1 reports the validation and test log-likelihoods for each method. The values are similar, but not
exactly comparable, as the effect of regularisation differs for each method. Figure 1 plots the training
log-likelihood against time-rescaled epoch for K = 256, and training time as function of mixture
components K. Figure 2 shows a 2-D projection from an example model with K = 256 fitted with
the minibatch-EM method.

3

Table 1: Average validation log-likelihoods for the Gaia data subset for different numbers of mixture
components K, with average test log-likelihood for the best value of K by validation. Average over
10 runs with standard deviation.

Method K Validation Test

Existing EM 64 −26.10± 0.03 -
Bovy et al. [3] 128 −25.96± 0.04 -

256 −25.76± 0.02 -
512 −25.67± 0.01 −25.66± 0.01

Minibatch EM 64 −26.05± 0.01 -
128 −25.91± 0.01 -
256 −25.83± 0.00 -
512 −25.80± 0.00 −25.79± 0.00

SGD 64 −25.89± 0.02 -
128 −25.77± 0.02 -
256 −25.67± 0.02 -
512 −25.59± 0.02 −25.57± 0.02

0 60 120 180 240 300 360
Right Ascension ()

90
60
30

0
30
60
90

D
ec

lin
at

io
n

(
)

Figure 2: Density plot showing a 2-D projection of 100000 samples drawn from a model with
K = 256 and fitted with the minibatch EM method. The plot shows the estimated density of star
positions on the sky, and has correctly recovered the structure of the Milky Way and the Magellanic
Clouds.

5 Discussion

Our results have shown that both of our proposed methods perform comparably to the existing method
of fitting extreme deconvolution models, whilst converging faster. The results also show that using
GPU-based computation speeds up fitting considerably, allowing sublinear scaling of training time
with mixture component size K.

Further improvements to our approaches are possible. The original paper presents a method of getting
out of local maxima by splitting and merging clusters, with the split-merge criteria evaluated on the
whole dataset. It should be possible to replace the criteria with stochastic estimates, which would
permit them to be used with both the SGD and minibatch EM methods. Our approaches also add
more free parameters to be selected, including learning rate and batch size. This adds scope for
hyperparameter optimisation to improve the log-likelihood.

In this preliminary study the SGD method provided the best log-likelihood values, was faster to train,
and scaled better with component size K. In addition, we found SGD to be more numerically stable
than minibatch-EM during training. Both minibatch methods will allow us to fit larger models going
forwards.

4

Acknowledgments

We are grateful to David W. Hogg for providing us with the problem and advising us on the Gaia
data. Our experiments made use of AstroPy [15, 16], corner.py [6], Matplotlib [7], Numpy [10],
Pandas [9], PyTorch [11] and Scikit-learn [12]. This work was supported in part by the EPSRC
Centre for Doctoral Training in Data Science, funded by the UK Engineering and Physical Sciences
Research Council (grant EP/L016427/1) and the University of Edinburgh.

References
[1] L. Anderson, D. W. Hogg, B. Leistedt, A. M. Price-Whelan, and J. Bovy. Improving Gaia

Parallax Precision with a Data-driven Model of Stars. The Astronomical Journal, 156(4):145,
Sept. 2018.

[2] L. Bottou, F. E. Curtis, and J. Nocedal. Optimization methods for large-scale machine learning.
SIAM Rev, 60(2):223–311, 2018.

[3] J. Bovy, D. W. Hogg, and S. T. Roweis. Extreme deconvolution: Inferring complete distribution
functions from noisy, heterogeneous and incomplete observations. The Annals of Applied
Statistics, 5(2B):1657–1677, June 2011.

[4] O. Cappé and E. Moulines. On-line expectation–maximization algorithm for latent data models.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 71(3):593–613,
2009.

[5] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum Likelihood from Incomplete Data via
the EM Algorithm. Journal of the Royal Statistical Society. Series B (Methodological), 39(1):
1–38, 1977.

[6] D. Foreman-Mackey. corner.py: Scatterplot matrices in python. The Journal of Open Source
Software, 24, 2016.

[7] J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science & Engineering, 9
(3):90–95, 2007.

[8] D. P. Kingma and J. Ba. Adam: A Method for Stochastic Optimization. 3rd International
Conference for Learning Representations, 2014.

[9] W. McKinney. Data structures for statistical computing in python. In S. van der Walt and
J. Millman, editors, Proceedings of the 9th Python in Science Conference, pages 51 – 56, 2010.

[10] T. Oliphant. NumPy: A guide to NumPy. USA: Trelgol Publishing, 2006.
[11] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison,

L. Antiga, and A. Lerer. Automatic differentiation in PyTorch. In NIPS Autodiff Workshop,
2017.

[12] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine
Learning Research, 12:2825–2830, 2011.

[13] M. A. C. Perryman, L. Lindegren, J. Kovalevsky, E. Høg, U. Bastian, P. L. Bernacca, M. Crézé,
F. Donati, M. Grenon, M. Grewing, F. Van Leeuwen, H. Van Der Marel, F. Mignard, C. A.
Murray, R. S. Le Poole, H. Schrijver, C. Turon, F. Arenou, M. Froeschlé, and C. S. Petersen.
The Hipparcos Catalogue. Astronomy and Astrophysics, 323(1):49–52, 1997.

[14] D. Sculley. Web-scale k-means clustering. In Proceedings of the 19th International Conference
on World Wide Web - WWW ’10, page 1177, Raleigh, North Carolina, USA, 2010. ACM Press.

[15] The Astropy Collaboration. Astropy: A community Python package for astronomy. Astronomy
& Astrophysics, 558:A33, Oct. 2013.

[16] The Astropy Collaboration. The Astropy Project: Building an Open-science Project and Status
of the v2.0 Core Package. The Astronomical Journal, 156:123, Sept. 2018.

[17] The Gaia Collaboration. The Gaia mission. Astronomy and Astrophysics, 595:A1, Nov. 2016.
[18] The Gaia Collaboration. Gaia Data Release 2. Summary of the contents and survey properties.

Astronomy & Astrophysics, 616:A1, Aug. 2018.
[19] P. M. Williams. Using neural networks to model conditional multivariate densities. Neural

Computation, 8(4):843–854, 1996.

5

A Stable Covariance Update

In Section 3.1 describing our minibatch-EM method, we noted that the M-step update for the variance
of each component Vj as presented in Equation 7 would be prone to catastrophic cancellation as a
result of taking a small difference between large values using single-precision floats. Here we present
an alternative update for Vj that is less prone to numerical instability, and show that it is equivalent to
Equation 7. For clarity we drop the component indicator j from the parameters, and add indicators t
and t− 1 to distinguish between current and previous estimates of parameters.

First, we define an adjustment operation,

adjust(V, s, c,d) = sV +
1

2
(c− d)(c+ d)T +

1

2
(c+ d)(c− d)T (9)

= s(V + ccT)− ddT , (10)

which can be thought of as recentering a scaled variance around a new mean. Equation 9 is how we
actually compute the adjustment, to minimise taking small differences between large values, whilst
Equation 10 shows the identity we are interested in.

In the M-step at iteration t of our minibatch EM approach, we compute estimates of q̂t, αt and mt as
before using Equations 6 and 7. We also compute minibatch-specific parameters using exact sums
over the minibatch:

qb =

M∑
i

ri, mb =

∑M
i rixi

qb
, Vb =

∑M
i ri[(xi − bi)(xi − bi)

T +Bi]

qb
(11)

We then compute our new estimate of the variance Vt as a function of the previous estimates
{q̂t−1,mt−1, Vt−1}, the minibatch values {qb,mb, Vb}, and the current estimates {q̂t,mt}:

Vt = (1− λ) adjust(Vt−1,
q̂t−1

q̂t
,mt−1,mt) + λ adjust(Vb,

qb
q̂t
,mb,mt) (12)

= (1− λ)
[
q̂t−1

q̂t

(
Vt−1 +mt−1m

T
t−1

)
−mtm

T
t

]
+ λ

[
qb
q̂t

(
Vb +mbm

T
b

)
−mtm

T
t

]
(13)

= (1− λ)

[
Ŝt−1

q̂t
−mtm

T
t

]
+ λ

[
St

q̂t
−mtm

T
t

]
(14)

=
(1− λ)Ŝt−1 + λSt

q̂t
−mtm

T
t (15)

=
Ŝt

q̂t
−mtm

T
t (16)

Again, Equation 12 is how we actually compute the update to minimise numerical errors, whilst
Equation 16 shows that the update is equivalent to the covariance update defined in Equation 7. Whilst
we found this update worked better in practice than a direct implementation, numerical instability is
still possible if the standard deviations of the components are small enough relative to the means, and
further work is needed to determine if a more stable update can be performed.

B Experiment Details

Here we provide specific details of our experiments for reproducibility. Code used to run the
experiments is available at https://github.com/bayesiains/scalable_xd.

B.1 Dataset

From the Gaia DR2 source table we selected the columns RA, DEC, PARALLAX, PMRA, PMDA, BP_RP
and PHOT_G_MEAN_MAG to assemble the observed dataset {xi}Ni=0 [18]. Random subsampling was
done by selecting rows with the value of the RANDOM_INDEX column less than 2,000,000. Noise
covariance matrices Si were assembled using the corresponding error and correlation columns for
each variable. Where a column of a row was marked as missing, the corresponding element of xi

6

https://github.com/bayesiains/scalable_xd

was set to zero, the corresponding diagonal element of Si was set to 1012, and the corresponding
off-diagonal elements set to zero. For columns which do not have associated noise, the corresponding
diagonal elements of Si were set to a value of 10−2, and corresponding off-diagonal elements to zero.

B.2 Initialisation

For each method, initialisation of the means and weights was done using the estimated counts and
centroids after 10 epochs of minibatch k-means clustering [14]. Covariances Vj were set to the
identity matrix.

B.3 Training

All methods were trained for a total of twenty epochs. Both minibatch methods used a batch size of
500. For the minibatch-EM method, the step size λ was started at 10−2 and reduced by a factor of
two after ten epochs. For the SGD method, we used the Adam optimiser with a learning of 10−2 for
the first ten epochs, reducing by a factor of ten for the last ten epochs, and all other parameters set to
the suggested defaults [8].

For numerical stability, a very small amount of regularisation was applied to the covariances Vj . Using
the original implementation, we set the regularisation constant w = 10−3. For the minibatch-EM
method, we added diagonal matrix wI directly to each covariance matrix after updating them. For
the SGD method, we added a penalty term

∑
j

w
Trace[Vj]

to the loss function. As noted in Section 4,
the effect of w is not comparable across methods. If we were using larger values of w to prevent
overfitting rather than just avoiding numerical instability, w would be tuned specifically for each
method.

7

	Introduction
	Background
	Methods
	Minibatch Expectation-Maximisation
	Stochastic Gradient Descent

	Experiments
	Discussion
	Stable Covariance Update
	Experiment Details
	Dataset
	Initialisation
	Training

