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Abstract

Quantum computing exploits basic quantum phenomena such as state superposition
and entanglement to perform computations. The Quantum Approximate Optimiza-
tion Algorithm (QAOA) is arguably one of the leading quantum algorithms that
can outperform classical state-of-the-art methods in the near term. QAOA is a
hybrid quantum-classical algorithm that combines a parameterized quantum state
evolution with a classical optimization routine to approximately solve combinato-
rial problems. The quality of the solution obtained by QAOA within a fixed budget
of calls to the quantum computer depends on the performance of the classical
optimization routine used to optimize the variational parameters. In this work,
we propose an approach based on reinforcement learning (RL) to train a policy
network that can be used to quickly find high-quality variational parameters for
unseen combinatorial problem instances. The RL agent is trained on small problem
instances which can be simulated on a classical computer, yet the learned RL policy
is generalizable and can be used to efficiently solve larger instances. Extensive
simulations using the IBM Qiskit Aer quantum circuit simulator demonstrate that
our trained RL policy can reduce the optimality gap by a factor up to 8.61 compared
with other off-the-shelf optimizers tested.

1 Introduction

Currently available Noisy Intermediate-Scale Quantum (NISQ) computers have limited error-
correction mechanisms and operate on a small number of quantum bits (qubits). Leveraging NISQ
devices to demonstrate quantum advantage in the near term requires quantum algorithms that can run
using low-depth quantum circuits. The Quantum Approximate Optimization Algorithm (QAOA) [1],
which has been recently proposed for approximately solving combinatorial problems, is considered
one of the candidate quantum algorithms that can outperform classical state-of-the-art methods in the
NISQ era [2]. QAOA combines a parameterized quantum state evolution on a NISQ device with a
classical optimization routine to find optimal parameters. Achieving practical quantum advantage
using QAOA is therefore contingent on the performance of the classical optimization routine.

QAOA encodes the solution to a classical unconstrained binary assignment combinatorial problem in
the spectrum of a cost Hamiltonian HC by mapping classical binary variables si ∈ {−1, 1} onto the
eigenvalues of the quantum Pauli-Z operator σ̂z . The optimal solution to the original combinatorial
problem can therefore be found by preparing the highest energy eigenstate of HC . To this end, QAOA
constructs a variational quantum state |ψ(β,γ)〉 by evolving a uniform superposition quantum state
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|ψ〉 = |+〉⊗n using a series of alternating operators e−iβkHM and e−iγkHC , ∀k ∈ [p],

|ψ(β,γ)〉 = e−iβpHM e−iγpHC · · · e−iβ1HM e−iγ1HC |+〉⊗n , (1)

where β,γ ∈ [−π, π] are 2p variational parameters, n is the number of qubits or binary variables,
and HM is the transverse field mixer Hamiltonian HM =

∑
i σ̂

x
i . In order to prepare the highest

energy eigenstate of HC , a classical optimizer is used to maximize the expected energy of HC ,

f(β,γ) = 〈ψ(β,γ)|HC |ψ(β,γ)〉 . (2)

For p → ∞, ∃β∗,γ∗ = arg maxβ,γ f(β,γ) such that the resulting quantum state |ψ(β∗,γ∗)〉
encodes the optimal solution to the classical combinatorial problem [1]. QAOA has been applied to a
variety of problems, including network community detection [3, 4], portfolio optimization [5], and
graph maximum cut (Max-Cut) [6, 7]. In this work, we choose graph Max-Cut as a target problem
for QAOA because of its equivalence to quadratic unconstrained binary optimization.

Consider a graph G = (V,E), where V is the set of vertices and E is the set of edges. The goal of
Max-Cut is to partition the set of vertices V into two disjoint subsets such that the total weight of
edges separating the two subsets is maximized:

max
s

∑
i,j∈V

wijsisj + c, sk ∈ {−1, 1},∀k, (3)

where sk is a binary variable that denotes partition assignment of vertex k, ∀k ∈ [n], wij = 1 if
(i, j) ∈ E, and 0 otherwise, and c is a constant. In order to encode (3) in a cost Hamiltonian, binary
variables sk are mapped onto the eigenvalues of the Pauli-Z operator σ̂z ,

HC =
∑
i,j∈V

wij σ̂
z
i σ̂

z
j . (4)

The works of [8, 9, 6] show that QAOA for Max-Cut can achieve approximation ratios exceeding
those achieved by the classical Goemans-Williamson algorithm [10]. However, QAOA parameter
optimization is known to be a hard problem because (2) is nonconvex with low-quality nondegenerate
local optima for high p [11, 7]. Existing works explore many approaches to QAOA parameter
optimization, including a variety of off-the-shelf gradient-based [12, 7, 6] and derivative-free meth-
ods [13, 14, 11]. Noting that the optimization objective (2) is specific to a given combinatorial
instance through its cost Hamiltonian (4), researchers have approached the task of finding optimal
QAOA parameters as an instance-specific task. To the best of our knowledge, approaching QAOA
parameter optimization as a learning task is underexplored, with few recent works [15].

Thus motivated, in this work we propose a method based on reinforcement learning (RL) to train a
policy network that can learn to exploit geometrical regularities in the QAOA optimization objective,
in order to efficiently optimize new QAOA circuits of unseen test instances. The RL agent is trained
on a small Max-Cut combinatorial instance that can be simulated on a classical computer, yet the
learned RL policy is generalizable and can be used to efficiently solve larger instances from different
classes and distributions. By conducting extensive simulations using the IBM Qiskit Aer quantum
circuit simulator, we show that our trained RL policy can reduce the optimality gap by a factor of up
to 8.61 compared with commonly used off-the-shelf optimizers.

2 Proposed approach

Learning an ptimizer to train machine learning models has recently attracted considerable research
interest. The motivation is to design optimization algorithms that can exploit structure within a class
of problems, which is otherwise unexploited by hand-engineered off-the-shelf optimizers. In existing
works, the leraned optimizer is implemented by a long short-term memory network [16] or a policy
network of an RL agent [17]. Our proposed approach to QAOA optimizer learning departs from that
of [17] in the design of the reward function and the policy search mechanism.

In the RL framework, an autonomous agent learns how to map its state s ∈ S , to an action a ∈ A, by
repeated interaction with an environment. The environment provides the agent with a reward signal
r ∈ R, in response to its action. A solution to the RL task is a stationary Markov policy that maps the
agent’s states to actions, π(a|s), such that the expected total discounted reward is maximized [18].
Learning a QAOA optimizer can therefore be regarded as learning a policy that produces iterative
QAOA parameter updates, based on the following state-action-reward formulation,
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1. ∀st ∈ S , st = {∆ftl,∆βtl,∆γtl}l=t−1,...,t−L; in other words, the state space is the set of
finite differences in the QAOA objective and the variational parameters between the current
iteration and L history iterations, S ⊂ R(2p+1)L.

2. ∀at ∈ A, at = {∆βtl,∆γtl}l=t−1; in other words, the action space is the set of step
vectors used to update the variational parameters, A ⊂ R2p.

3. R(st, at, st+1) = f(βt + ∆βt,tl,γt + ∆γtl)− f(βt,γt), l = t− 1; in other words, the
reward is the change in the QAOA objective between two consecutive iterations.

The motivation for our state space formulation comes from the fact that parameter updates at
xt = (βt,γt) should be in the direction of the gradient at xt and the step size should be proportional
to the Hessian at xt, both of which can be numerically approximated by using the method of finite
differences. The RL agent’s role is then to find an optimal reward-maximizing mapping to produce
the step vector at = {∆βtl,∆γtl}l=t−1, given some collection of historical differences in the
objective and parameters space, {∆ftl,∆βtl,∆γtl}l=t−1,...,t−L. Note that the cumulative rewards
are maximized when R(st, at, st+1) ≥ 0, which means the QAOA objective has been increased
between any two consecutive iterates. The reward function adheres to the Markovian assumption and
encourages the agent to produce parameter updates that yield higher increase in the QAOA objective
(2), if possible, while maintaining conditional independence on historical states and actions.

3 Experiments

Random Ladder

Barbell Caveman

Figure 1: Sample graph in-
stances, TBLR: GR(nR =
8, ep = 0.5), GL(nL = 4),
GB(nB = 4), GC(nC =
2, nk = 4).

We train our proposed approach on a small nR = 8 qubit graph
instance drawn from an Erdos Renyi random graph with edge gener-
ation probability ep = 0.5. Training was performed over 750 epochs,
where each epoch corresponds to 8, 192 QAOA circuit simulations
executed by using IBM Qiskit Aer simulator [19]. Within each
epoch are 1, 28 episodes. Each training episode corresponds to a
trajectory of length T = 64 that is sampled from a depth-p QAOA
objective (2) for the training instance. At the end of each episode,
the trajectory is cut off and is randomly restarted.

For policy search, we adopt the actor-critic Proximal Policy Op-
timization (PPO) algorithm [20], which uses a clipped surrogate
advantage objective as a training objective. To further mitigate pol-
icy updates that can cause policy collapse, we adopt a simple early
stopping method, which terminates gradient optimization on the
PPO objective when the mean KL-divergence between the new and
old policy hits a predefined threshold. Fully connected multilayer
perceptron networks with two 64-neuron hidden layers for both the
actor and critic networks are used. A Gaussian policy with a con-
stant noise variance of e−6 is adopted throughout training. At testing, the trained policy network
corresponding to the mean of the learned Gaussian policy is used, without noise.

To test the performance of the learned RL policy, we chose a large set GTest of Max-Cut test instances,
coming from different sizes, classes, and distributions. Specifically, four classes of graphs are consid-
ered: (1) Erdos Renyi random graphs GR(nR, ep), nR ∈ {8, 12, 16, 20}, ep ∈ {0.5, 0.6, 0.7, 0.8},
seed = {1, 2, 3, 4}; (2) ladder graphs GL(nL), where nL ∈ {2, 3, 4, 5, 6, 7, 8, 9, 10, 11} is the
length of the ladder; (3) barbell graphs GB(nB), formed by connecting two complete graphs
KnB

by an edge, where nB ∈ {3, 4, 5, 6, 7, 8, 9, 10, 11}; and (4) caveman graphs GC(nC , nk),
where nC is the number of cliques and nk is the size of each clique, {(nC , 4) : nC ∈ {3, 4, 5}},
{(nC , 3) : nC ∈ {3, 5, 7}},{(2, nK) : nK ∈ {3, 4, 5, 6, 7, 8, 9, 10}}. Thus, |GTest| = 97. Figure 1
shows sample graph instances in GTest. GTest is chosen to demonstrate that combining our proposed
RL-based approach with QAOA can be a powerful tool for amortizing the QAOA optimization cost
across graph instances, as well as demonstrating the generalizability of the learned policy.

4 Results

In Figure 2, the expected energy in (2) for a depth (p = 1) QAOA circuit is shown for some graph
instances. We observe that the expected energy is nonconvex in the parameter space. Figures 3(a) and
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Figure 2: QAOA energy landscapes for p = 1.

(b) visualize the trajectory produced by the learned RL policy on one of the test instances. We can see
that the learned policy produces trajectories that quickly head to the maximum (in about 20 iterations
in this example), yet a wiggly behavior is observed afterwards. Figure 3(c) shows a boxplot of the
expected approximation ratio performance, E[ηG] = E[f/Copt], of QAOA with respect to the classical
optimal Copt found by using brute-force methods across different graph instances in GTest, which are
grouped in three subgroups: (1) random graphs, which contains all graphs of the form GR(nR, ep);
(2) community graphs, which contains graphs of the form GC(nC , nk) and GB(nB); and (3) ladder
graphs, which contains graphs of the form GL(nL). We can see that increasing the depth of the
QAOA circuit improves the attained approximation ratio. Next, we benchmark the performance of
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Figure 3: Visualization of the trajectory produced by the learned RL policy on one of the test instances
for the QAOA circuit of p = 1 (a)–(b), and the approximation ratio performance of QAOA with
respect to classical optimal on graph instances in GTest (c).

our trained RL-based QAOA optimization policy (referred to as RL) by comparing its performance
with that of a commonly used derivative-free off-the-shelf optimizer, namely, Nelder-Mead [21], on
graph instances in GTest. Starting from 10 randomly chosen variational parameters in the domain of
(2), each optimizer is given 10 attempts with a budget of B = 192 quantum circuit evaluations. In
addition, we use the learned RL policy to generate trajectories of length B/2, and we resume the
trajectory from the best parameters found using Nelder-Mead for the rest of B/2 evaluations (referred
to as RLNM). This approach is motivated by the observed behavior of the learned RL policy in 3(b).
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In Figures 4 (a)–(c), we present a boxplot of the expected optimality ratio, E[τG] = E[f/fopt], where
the expectation is with respect to the highest objective value attained by a given optimizer in each of
its 10 attempts. The optimal solution to a graph instance in GTest is the largest known f value found
by any optimizer in any of its 10 attempts for a given depth p. We can see that the median optimality
ratios achieved by RL and RLNM outperform that of Nelder-Mead for p = {1, 2} and p = {1, 2, 4},
respectively. The median optimality gap reduction factor of RLNM with respect to Nelder-Mead
ranges from 1.16 to 8.61 depending on the graph subgroup and QAOA circuit depth p.
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Figure 4: Expected optimality ratio performance of Nelder-Mead, learned RL optimization policy,
and the combined RLNM for a given QAOA circuit depth p ∈ {1, 2, 4} on graph instances in GTest.

5 Conclusion

In this paper, we addressed the problem of finding optimal QAOA parameters as a learning task.
We propose an RL-based approach that can learn a policy network that exploits regularities in the
geometry of QAOA instances to efficiently optimize new QAOA circuits. We demonstrate that there
is a learnable policy that generalize well across different instances of different sizes, even when the
agent is trained on small instances. The learned policy can reduce the optimality gap by a factor up to
8.61 compared with other off-the-shelf optimizers tested.
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