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Abstract

In this work we use a Wasserstein Generative Adversarial Network (WGAN) to
generate new high-resolution 3D realizations of cosmic neutral Hydrogen (HI). The
generator produces samples that match closely the fully non-linear abundance and
clustering properties of cosmic HI from the state-of-the-art simulation IllustrisTNG.
We show that different statistical properties of the generated samples – 1D PDF,
power spectrum, bispectrum, and void size function – match very well to those
of IllustrisTNG, and outperform state-of-the-art models such as Halo Occupation
Distributions (HODs). Our WGAN samples reproduce the abundance of HI across
9 orders of magnitude, from the Lyα forest to Damped Lyman Absorbers.

1 Introduction

In the coming years, powerful cosmological surveys will be collecting data with the aim of constrain-
ing the value of cosmological parameters with the highest accuracy possible, in order to improve
our understanding of the fundamental physical laws of the Universe. The abundance and spatial
distribution of HI, directly observable with these surveys, contains a large amount of information on
fundamental physical quantities. In order to extract it, one must compare the data from these missions
against accurate and precise theory predictions. Numerical simulations are one of the most powerful
ways to obtain the theory predictions.

The current state-of-the-art magneto-hydrodynamic simulations from ILLUSTRISTNG required more
than 150 million CPU hours [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. In this work, we investigate the use
of Generative Adversarial Networks (GANs) to quickly generate high-resolution 3D distributions
of cosmic HI with the same statistical properties as the computationally expensive IllustrisTNG
simulation. This constitutes a significant first step towards an efficient generation of accurate
theoretical predictions of cosmic HI from large to small scales, needed to maximize the scientific
return of aforementioned upcoming 21cm surveys.

2 Data

The simulation used as training data is TNG100-1, produced by the IllustrisTNG collaboration [7].
We focus our attention on cosmic HI at redshift 5 (1.2 Gyr after the Big Bang). The sparsity of the
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Table 1: Statistical properties of our training data
Min Max Median Mean SD

0 4.4× 109 13.2 1.5× 104 9.2× 105

field is smaller at this redshift than in lower redshifts, facilitating the training of deep learning models.
The data consists of a 2048 × 2048 × 2048 cube where the value in each cell of the grid is the total
HI mass. We have kept a cubic section with a volume equal to 1/8 times that of the entire cube as test
set. For the training data, we randomly sample sub-cubes of 64 × 64 × 64 cells, corresponding to a
comoving volume of ∼ (2.34 h−1Mpc)3, from the region outside of the test set.

The probability distribution function of our data exhibits a very long tail for cells with large HI masses
(see table 1). In order to facilitate the training of our model, we perform the following transformation
to scale the data to the [−0.23, 1] interval 3:

m̃HI =
log10(mHI + ε)

log10(m
max
HI + ε)

(1)

where mmax
HI is the maximum HI mass from all cells and we have set ε = 0.01.

3 Model & Training

In the Wasserstein GAN setup [13], the Critic, instead of trying to differentiate between real and
generated samples, provides an approximation of how far the generated samples are from the real
ones by using an approximation of the Earth Mover distance. [14] showed that using gradient penalty
in the critic’s loss function instead of weight clamping is a better approach to ensure that the Lipschitz
constraint is met. Hence, the critic’s loss function is given by:

LD (θd) = E [D (G (z; θg) ; θd)]− E [D (x; θd)] + λEx̂∼Px̂

[
(‖∇x̂D(x̂)‖2 − 1)

2
]

(2)

where D is the critic parametrized by θd, G is the generator parametrized by θg , z is a vector of size
100 sampled from a standard Gaussian distribution, and λ is the gradient penalty coefficient which
we set equal to 10. x̂ is an interpolation between the real and generated samples: x̂ = tx+ (1− t)y,
where t ∼ U [0, 1] and x ∼ Pr, y ∼ Pg .

The loss function of the generator is given by:

LG (θg) = −E [D (G (z; θg) ; θd)] (3)

We use an all-convolutional architecture, similar to the deep convolutional GAN (DCGAN) implemen-
tation of [15], adapted to three-dimensional data. The generator consists of five 3D fractionally-strided
convolutions (transpose convolution) layers with rectified linear unit (ReLU) activation and batch
norm (3D) layers followed by two convolutional layers, with filter sizes 3 and 2, respectively. The
final activation function is tanh. The number of channels in the first layer is 1024, halving in size until
the last layer, which receives 128 channels and outputs 1. The critic has seven convolutional layers
with leaky ReLU activations. The number of channels is symmetric to the generator. Adding the
extra convolutional layers without changing the feature map sizes improved significantly the quality
of the generated samples.

We used the Adam optimization algorithm with learning rate of 0.0005 and betas of 0.5 and 0.9. We
trained for approximately 400 hours and 150,000 generator iterations.

4 Benchmark, Results & Validation Metrics

In Fig. 1, we show examples of 3D HI distributions from IllustrisTNG and generated from our
trained WGAN. As it can be seen, the WGAN is able to generate realizations that visually look very
similar the IllustrisTNG samples. Likewise, in Fig. 2, we can see that the generator has learned a

3Where −0.23 corresponds to the empty cells (zero mass) and 1 to the maximum value in the original scale.
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Figure 1: 3D HI distributions from IllustrisTNG (top row) and WGAN (bottom row). The Generator
produces spatial distributions with all the elements of the HI web: filaments, voids and dense regions.

Figure 2: WGAN Samples generated by linearly interpolating between two latent space vectors. The
generator learns a smooth mapping from the latent space to the output space.

smooth mapping from the latent space to the output space. In our case, the volume of each cell is
' (35 h−1kpc)3, i.e. we are deep into the non-linear regime. In addition, in Fig. 3 we quantify
the agreement between the 3D HI distribution of the different models using four different summary
statistics that are sensitive to different regions of the underlying field.

Benchmark: Halo Occupation Distribution In the post-reionization era, most of the cosmic HI in
the Universe resides within dark matter halos, this is the basis principle underlying the state-of-the-art

(a) 1D PDF (b) Power spectrum

(c) Bispectrum (d) Voids

Figure 3: Validation metrics for 1000 samples from IllustrisTNG, WGAN and HOD.
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framework developed in [16] to model the abundance and spatial distribution of HI. This model is
used as a benchmark to judge the performance of our generative model. The procedure to generate
3D HI mock distributions is as follows. We randomly select a sub-cube of TNG100-1-Dark, which is
a dark-matter-only N-body simulation with the same mass, spatial resolution, and mode phases as
the full hydrodynamical TNG100-1. We then identify all halos that lie inside that region by finding
their positions and masses. For each halo, we then compute its total HI mass and then distribute the
total HI mass inside the halo using 1000 particles. For each particle, its radius is drawn from the HI
density exponential distribution, while its direction is taken randomly. We repeat this procedure for
all halos that lie within the considered sub-cube. Finally, we construct a 64× 64× 64 grid from the
positions and HI masses of all the particle tracers, using the CIC interpolation scheme.

1-D Probability Mass Function We compute the mean and standard deviation in log scale as
a function of HI mass for the three sample sets. The WGAN is able to reproduce the PDF from
IllustrisTNG from m̃HI ∈ [0, 1], i.e. for more than 9 orders of magnitude for HI masses. While the
HOD fails to reproduce the central part of the PDF, which is dominated by low HI density cells,
corresponding to the Lyα-forest. On the low mass tail, the WGAN model performs slightly worse. In
particular, we can see how our model fails at reproducing a peak around −0.23, which corresponds
to empty cells in IllustrisTNG. We notice however that those cells will have negligible contribution to
the observed signal.

Power Spectrum In Fig. 3b we show the mean HI power spectrum and standard deviation as
a function of wavenumber from the three sample sets. We find that the HI distribution from the
WGANs samples have, on large scales, an average power spectrum which is very close in amplitude
and in shape to that of the IllustrisTNG samples. The HOD model is not able to reproduce the
power spectrum from IllustrisTNG on any of the above considered scale. We should note the scales
considered here are highly non-linear; the HOD model is expected to not perform well on those scales.
We also note that, for some HI masses, the variance of the WGAN samples are smaller than the
ones from IllustrisTNG. We believe that the unconditional nature of the WGAN causes the standard
deviations of the WGAN values to be smaller than the variance on the simulation in the intermediate
scales. We believe that this could be addressed by conditioning the WGAN on the amplitude of the
HI power spectrum in a cell.

Bispectrum The bispectrum carries information pertaining to departure of a field distribution from
Gaussianity. For simplicity, we have selected a value of k1 = 6 h/Mpc and k2 = 6.5 h/Mpc and
varied the angle θ, i.e. k3, although we get similar results for other configurations. The figure shows
the mean and standard deviation as a function of the angle between k1 and k2. We find that the
bispectra of the WGAN samples are closer to those of IllustrisTNG than to those of the HOD.

Voids Abundance Voids are connected regions in the HI density field that are underdense with
respect to the mean HI density. Void size function, defined as the number density of voids per unit of
radius as a function of void radius. We show the results in Fig. 3d. The plot shows the mean and the
standard deviation of the void size function (number density of voids per unit of radius) as a function
of radius for the three sets. We find that both the WGAN and HOD models produce fields with the
same abundance of underdense regions as IllustrisTNG.

5 Conclusions

In this work we demonstrated the usefulness of generative adversarial neural networks to make
fast and accurate predictions of the distribution of cosmic HI, over scales deep into the non-linear
regime. Our WGAN model learns a 100-dimension manifold that characterizes the abundance and
clustering of HI in the fully non-linear regime. By sampling from that manifold, we produce new
samples with very close statistical properties to the ones from the full hydrodynamic simulation
IllustrisTNG. Moreover, we found that our generated samples exhibit better agreement with the
IllustrisTNG simulated samples than the current benchmark HOD model when considering four
summary statistics: the 1D PDF, the power spectrum, the bispectrum, and the voids abundance.

This works represents a first step towards a fast, accurate, and precise theory prediction pipeline
needed to maximize the scientific return of upcoming cosmological 21cm survey missions. We
are hoping that the variance of the produced samples can be made even closer to those of costly
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hydrodynamical simulations by conditioning the GANs on the amplitude of the power spectrum
in the predicted volume, an avenue which we plan to explore in follow-up work. In future work,
we also plan to explore the possibility of creating samples of larger cosmological volumes and at
different, lower redshifts. These, along with extensions of the model to predict HI velocities to allow a
redshift-space analysis and extensions to different cosmological parameter values will, in our opinion,
pave the way for machine learning methods to extend the capabilities of the small and expensive
hydrodynamical simulations in the analysis of up coming survey data.
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