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Abstract

Computer-assisted synthesis planning aims to help chemists find better reaction
pathways faster. Finding viable and short pathways from sugar molecules to value-
added chemicals can be modeled as a retrosynthesis planning problem with a
catalyst allowed. This is a crucial step in efficient biomass conversion. The tradi-
tional computational chemistry approach to identifying possible reaction pathways
involves computing the reaction energies of hundreds of intermediates, which is a
critical bottleneck in silico reaction discovery. Deep reinforcement learning has
shown in other domains that a well-trained agent with little or no prior human
knowledge can surpass human performance. While some effort has been made to
adapt machine learning techniques to the retrosynthesis planning problem, value-
added chemical discovery presents unique challenges. Specifically, the reaction
can occur in several different sites in a molecule, a subtle case that has never been
treated in previous works. With a more versatile formulation of the problem as
a Markov decision process, we address the problem using deep reinforcement
learning techniques and present promising preliminary results.

1 Introduction

Chemical transformation is the basis of every aspect of industrial processes including the production
of drugs, chemicals, and transportation fuels. Artificial intelligence—in particular, machine learning
(ML)—and improved materials understanding present a unique opportunity to provide design rules
for utilizing easily accessible carbon reserves in the world by transforming them to value-added
chemicals. In order to enable and maximize these chemical transformations, a detailed understanding
of the mechanistic steps and knowledge of shortest viable discovery pathways are essential. Existing
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discovery approaches, however, are either manually driven or based on trial and error. Automatically
discovering transformation pathways by using ML has the potential to revolutionize and accelerate
the discovery of chemicals and novel reaction pathways.

Through various chemical transformations carbon, oxygen, and hydrogen atoms of biomass can be
utilized to form useful CxHyOz candidates. In this regard, automated data-driven adaptive algorithms
can play a crucial part in optimizing the desired pathways for the production of novel compounds
or identifying viable and cost-effective synthetic routes. To demonstrate this, we have chosen an
example of aqueous acid-catalyzed conversion of a fructose molecule to a value-added compound,
hydroxy methyl furfural (HMF). This transformation is equivalent to three consecutive dehydration
reactions (removal of water molecule) from fructose (shown in Figure 1a). We have developed
an automatic reaction pathway generator (in Python) based on chemistry rules. This code utilizes
RDKit [5], an open-source cheminformatics software kit that includes an implementation of chemical
reactions based on the SMILES arbitrary target specification (SMARTS). We have postulated rules for
reactions associated with the carbohydrate chemistry: (a) protonation/deprotonation, (b) dehydration,
(c) hydride shift, (d) ring opening (C-O bond cleavage) upon protonation, (e) ring closure (C-O bond)
formation upon protonation, (f) ring contraction/expansion (5-6-7 membered rings), (g) keto-enol
transformation, (h) addition of water on keto group to form diols, and (i) formation of formic acid
from terminal diols.

Notable recent ML approaches for molecular structure design with sequential chemical transformation
stem from the work of Segler et al. [11] and Coley et al. [3], where a reaction template-based
Monte Carlo tree search approach and graph convolutional neural-network-based supervised learning
approach are adopted, respectively. Schrek et al. [8] recently used deep reinforcement learning to
determine optimal reaction paths, an approach that has great potential for synthesis of unfamiliar
molecules. However, all previous works implicitly assume that there is one reaction center possible
within a molecule given a particular action template, or they never explicitly state how they handle the
multireaction center case. Furthermore, both [11] and [8] mentioned that the quality of the reaction
template or the choice of the template is one of the major reasons for the success. Unfortunately, a
molecule with several reaction centers given a single reaction template in the sense of [11, 8, 3] is
ubiquitous in our scenario, indicating that the crux of our problem is fundamentally different from
what the previous works were able to address. Even with computational heavy quantum chemistry
methods, one can have a not-quite-accurate estimation of which reaction center has the best chance.
This situation motivates us to construct a more versatile formulation of the problem as a Markov
decision process, in the hope that the agent will be able to implicitly learn the underlying probability
distribution of the reaction centers through self-play.

(a) Acid-catalyzed aqueous chemistry: fructose to HMF (b) Protonating fructose at different reaction
centers leads to distinct offspring

Figure 1: Illustration of chemical reactions on the fructose molecule.

2 Reinforcement learning for chemical synthesis

We formulate the chemical synthesis problem as a Markov decision process (MDP) [12] to make it
amenable to the use of reinforcement learning techniques. An MDP is a tuple (S, A, T , r), where
S denotes the state space, A the action space, T (s, a, s′) the transition model, and r the reward
function r : S ×A → R, respectively. In our study, a state s ∈ S is a set of molecules, and an action
a ∈ A(s) is one of the reactions from (a)–(i) introduced in the preceding section. We chose to have
the action space vary with the states because although only one SMART template represents each
type of reaction, the actual reaction can happen at any site that abides by the chemistry rules. For
example, a fructose molecule has six distinct sites (hydroxyl group) where protonation can happen,
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with different probability determined by the molecule structure and thermodynamics property, which
is shown in [1] to be an important factor. Previous works, including those of Segler et al. [11] and
Schrek et al. [8], classify actions only up to the reaction center. The major concern in both papers
was choosing the most likely reaction template at each state. While such simplification is appropriate
for most chemical reactions, capturing the underlying probability distribution is simply not enough
when several possible sites are present, as is crucial in our scenario. As a concrete example, a fructose
molecule and two distinct reactive offspring from protonation are shown in Figure 1b. Both [? ]
and [8] would represent these as a single action, whereas our formulation distinguishes the reaction
centers.

The agent interacts with this environment by choosing a sequence of actions starting from the initial
state and receives a positive reward if the goal state is reached within the maximum steps allowed.
Otherwise a negative reward is used to penalize the choices made. The goal of the agent is then to
learn an optimal policy function in order to maximize the rewards.

3 Experiments

Our approach starts by reading the SMILES string of the parent (fructose) and applying the protonation
rule. Doing so is equivalent to the first step of the acid-catalyzed reaction. For example, fructose has
six oxygen atoms; therefore, fructose would have six unique reaction centers and protonation results
in the formation of six reactive offspring from fructose. Starting from three initial reactants (fructose,
water, and proton), all reaction rules are applied to each reactant one by one. As product species
are generated, they are added to the current reactant pool if they are not already in it. The process
propagates until no new product can be formed or the reactant list cannot be updated any further. If
we account only for the products with oxidation s1 or less (neutral), 2,500 reactions can be generated
from the initial three reactants. The initial and goal state have been tailored to this data set. We use
fructose as initial state and HMF as a goal state. We note that most of the reactions in the generated
data set are reversible. By reversing the actions, the characterization of the data set changes, allowing
us to test the agent’s ability to generalize. After reversing the reactions, we run an experiment with
fructose as the goal state and HMF as initial state, respectively.

Both the original data set and its reversed variant are manually generated. They are meant to simulate
the environment on a smaller scale for validation before the full-scale study. Eventually, the available
actions A(s) will be generated by determining the possible sites given the current molecule by the
algorithm in an ad hoc fashion.

The molecules are represented by using a Morgan fingerprint folded to 1,000 dimensions, prepared by
using RDKit [5]. The Morgan fingerprint is shown to be similar to ECFP4 in most cases according to
the description in the online documentation of RDKit [5]. To set up the experiment, we implement an
OpenAI gym [2] environment, and we train the policy network with the Proximal Policy Optimization
(PPO) algorithm [10]. The policy network is modeled by a 128-unit LSTM network [4]. We believe
the choice of policy network and training algorithm is appropriate for the following reasons. If we
treat our environment as a graph, with states as nodes and actions as edges, or pairs of reactions, for
example protonation/deprotonation, potential loops can be created. Even longer loops are feasible.
We would like the agent’s policy network to remember the actions it had taken before; and, by
receiving negative rewards, the agent would learn to avoid such loops. As for using PPO to update
the policy, we note that rewards are given only at the end of each trajectory.

PPO is known to work well on sparse reward problems [7]. Compared with other policy gradient
algorithms such as TRPO [9] or DDPG [6], it is easily scalable, is more robust, and needs little
hyperparameter tuning [10].

A trajectory is defined as an attempted path from the initial state to a goal state. Rewards are received
only once in each trajectory. Because of the nature of chemical reactions, it is impractical to consider
synthesis paths longer than M = 20 steps. Let t denote the number of steps. A trajectory has three
possible outcomes: (1) the agent reaches goal state at t = T ≤ M steps and receives a reward of
1 + 1/T ; (2) the agent reaches a dead-end state, where no more reactions can happen, and receives a
reward of −1, or (3) the agent does reach goal state or dead-end state within M steps and receives a
reward of −1.
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4 Results

(a) fructose to HMF (b) HMF to fructose

Figure 2: Length of shortest paths with different start states.

In Figures 2a and 2b, the number of steps of shortest paths our agent found was plotted against the
number of trajectories. The initial impression is that the agent does gradually learn the shortest paths,
but the learning experience varies depending on the start state. The forward direction (fructose to
HMF) converges more slowly, possibly because at many states there are more choices of action.
During our experiments we found that the performance of the agent is consistent every time we
retrain the policy network; therefore no average is taken.

Our experiment, although simple, has demonstrated great potential. Data exploration shows that the
test data set and its reverse have varied characteristics in terms of the maximum number of actions
available across all states and the umber of dead-end states. The agent performed well nonetheless in
both cases. Moreover, the agent has little knowledge about the underlying chemistry other than that
all molecules are represented by Morgan fingerprints. Not only is the human factor removed from
the discovery process, but the training overhead found in [11] is also avoided. The simplicity does
not mean the performance is compromised. In fact, one of the shortest paths found in Figure 3 is
identical to one of the shortest paths identified by chemists in [1]. To compute the thermodynamic
landscape as in [1] is in general difficult. The agent has demonstrated the ability to learn through
self-play, which is extremely helpful in our scenario.

5 Discussion

This work is only the beginning of an exciting project. We point out some future directions that
are worth exploring. Our next step is to assess how this approach generalizes to other initial/goal

Figure 3: One shortest fructose-HMF reaction sequence identified by reinforcement learning.
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state configurations as well as to larger data sets. We are developing methods to compute possible
actions at each state instead of generating them manually, which would become infeasible with
various different start states. The molecule structure largely determines the likelihood of the site at
which a particular reaction is going to happen. By converting to Morgan fingerprints, however, this
structural information is partially lost in the translation. Therefore, we are planning to change the
representation of molecules to graphs so that the agent may be able to learn more directly from the
representation rather than using Morgan fingerprints. Following up the previous idea, we hypothesize
that a pretrained network for predicting sites, ideally working directly with the graph representation,
will help the agent learn faster in a larger data set.
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