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Abstract

We describe a framework for finding ground state configurations of an ensemble
of energy landscapes sharing distinct topological features. We construct a model
energy landscape ensemble with Ising model Hamiltonian where the interaction
matrices are drawn from protein contact map data. Our approach leverages graph
neural network to learn a mapping from an interaction matrix J to a ground state
configuration, yielding guesses for the set of most probable configurations. Given
these guesses, we show that ground state configurations can be searched much
faster than with vanilla simulated annealing. We also demonstrate that the search
performance is sensitive to the complexity of the Hamiltonian.

1 Introduction

An energy landscape is a hypersurface which describes how the energy of a system changes as a
function of system degrees of freedom [1]. Arguably one of the most important problems regarding
an energy landscape is finding the ground state configuration. To this end, one can run simulated
annealing to get Markov chains to anneal down to the global minimum as a simulation temperature
approaches zero [2]. However, in cases where many interacting degrees of freedom result in a highly
rugged energy landscapes, conventional sampling-based methods suffer from low probability of
overcoming energy barriers and the chain may get stuck in local minima [3, 4].

In the physical sciences, we often have an ensemble of energy landscapes featuring similar topological
patterns since there is a unique set of system degrees of freedom subjected to a single or handful
of governing equations. One example is the energy landscapes of organic molecules built out of
chemical building blocks where potential energies are obtained by solving Schrödinger equation.
Under this ensemble setting, we investigate the possibility of using neural network to predict the
ground state configurations of an energy landscape directly, circumventing the need to devise a
system-specific sampling rule [5, 6].

To test the idea, we consider a model problem where we can define a natural ensemble. We construct
Ising spin glasses [7], where the interaction matrix J is a structured random matrix. In this work, we
instantiate this energy landscape ensemble using protein contact map as J matrices. Given the large
database of natural proteins in Protein Data Bank [8], the protein contact map data gives a large set
of J’s upon which to define our ensemble. Recasting the global minimum prediction task as a node
classification problem in graph theory, we employ a graph neural network (GNN) [9] to parametrize a
mapping from a J to the corresponding ground state configuration. We then generate the set of most
probable configurations from the GNN to predict low-lying configurations of the energy landscape. If
these configurations miss the ground state configuration, we show that simulated annealing starting
from a configuration in this set can search for the ground state configuration more efficiently. In
addition, we probe how the GNN model performance is affected by the size and the topology of the
energy landscape.
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2 Energy Landscape Ensemble

Model formulation Given an ensemble of similarly defined Hamiltonians, the resulting potential
energy landscapes will feature similar patterns of undulation in high-dimension. To construct a model
ensemble, we consider the following Ising model Hamiltonian

H(σ) = −1

2

N∑
i,j

Jijσiσj + h

N∑
i

σi, h =

∑
Jij

2N
(1)

where both coupling and field terms depend on an interaction matrix J and Jij , σi ∈ {0, 1}. The
form of field is chosen to prevent all ground state configurations from trivially collapsing to a vector
of all 1’s. Under this formulation, the similarity of energy landscapes corresponds to the similarity
of J matrices since J alone determines the Hamiltonian. We obtain an energy landscape ensemble
by taking protein contact maps as our J ensemble. Proteins are characterized by distinct secondary
structures with few additional non-local contacts, the pattern of which leads to a structured random
connectivity in the J matrix. It should be noted that spin configurations here bear no relation to
amino acid sequences; rather, the model represents a combinatorial optimization problem on a graph
where a spin variable is turned on or off to minimize the potential energy given by Equation 1. We
will thus use the term node for a spin variable σ from here on.

Dataset preparation We downloaded all single-chain protein structure files deposited in RCSB
PDB [10] to ensure J’s do not have a distinct block structure due to the presence of subunits and
their features are solely governed by the pattern of intramolecular folding. We limit our data to
proteins whose length ranges from 20 to 800 residues. We then generated a contact map following
the standard procedure [11], and obtained 64563 contact maps to define a J ensemble. We ran a
simulated annealing for each J starting from 100 random initial configurations, and selected an
annealed configuration with the lowest energy as its purported ground state configuration, σmin.
Since the problem is NP-hard, we settle for this repeated annealing scheme and assume σmin closely
approximates the actual ground state configuration. We also counted the number of distinct annealed
configurations from this experiment for future analysis. From all pairs of J and σmin, 6400 pairs
were randomly selected as a validation set, another 6400 as a test set, and the rest as a training set.

3 Computational method

Motivation for graph neural network Searching for ground state configurations in our model
ensemble is a challenging task for two reasons. First, the connectivity set by J represents a quenched
disorder in the Hamiltonian of Eq. 1, which, together with the field term offsetting the favorable
energy contribution of turning on a node, gives rise to a frustrated energy landscape with many
local minima. In addition, a configurational space to search over is very large, with the number of
configurations growing as 2N , where N ranges from 20 to 800. Due to these issues, we would like to
forgo a stochastic search method and instead learn a mapping from J to a ground state configuration
using GNN. Our idea is to generate an expressive node embedding from original node features and a
graph structure, and use this embedding to classify globally whether each node shall be turned on or
off. To allow for generalization of the mapping across J’s, we chose a message passing framework
[12] instead of a Laplacian-based convolution method which requires a constant graph structure.

Model architecture In this work, we applied Graph Attention Network [13] which utilize attention
mechanism to assign different weights to different neighboring nodes. The network takes two input,
an adjacency matrix J and node feature matrix, h = {~h1,~h2, . . . ,~hN},~hi ∈ RM whereM is initially
2 with node degree and field strength as two representative node features. At each network layer, we
first transform these M features into M ′ hidden features via a weight matrix, W ∈ RM ′×M . We then
calculate an attention coefficient αij—which represents the influence of node j on node i—using a
weight vector, ~a ∈ R2M ′

, as following

αij =
exp

(
σ
(
~aT [W~hi‖W~hj ]

))∑
k∈Ni

exp
(
σ
(
~aT

[W~hi‖W~hk]
)) (2)
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Figure 1: (a) Test set performance averaged over J’s in a size window of 100. (b) Histogram of
the classification probabilities. Inset shows the fraction of misclassified nodes among confident
nodes. (c) Average number of sampling to reach σmin in simulated annealing starting from a random
configuration (blue) and σ̂top(orange). We also report the minimum number of samples (green).

where Ni denotes neighbors of node i, σ represents an activation function, and ‖ a concatenation
operation. The hidden feature of a node, ~h′, is then computed by taking a weighted sum of hidden
features of neighboring nodes. Employing multi-headed attention, we repeat ~h′ calculation K times—
each with different W, ~a, and newly computed α—and concatenate them in an input and middle
layers and averaged them in a final layer to retain M ′=2, representing P (σi=0) and P (σi=1).

Training setup Unless otherwise mentioned, we followed the inductive learning setup of [13]. We
trained the model to minimize the binary cross-entropy between the configuration probabilities and
σmin found via annealing, with a batch size of 16. After optimizing on the validation set, we found a
five layer model with K=4 attention heads and M ′=128 hidden features to perform best.

Enumerating top most probable configurations Since the original argmax point estimate scheme
does not take a full advantage of the learned embedding, we generate a set of top most probable
configurations from the configuration probability output of the GNN model. To obtain L such
configurations, we pick top log2 L nodes whose P (σ=1) are close to 0.5, and order all permuted
configurations according to their corresponding sum combination of probabilities.

4 Results

As shown in Figure 1.(a), the fraction of correctly predicted nodes in σ̂ decreases while the energy
difference between a predicted configuration and σmin increases as the size of J increases, the trend
which is reasonable because large J’s have a more complex pattern of connectivity than small J’s
with sparser connection. Notably, σ̂ matched σmin exactly in 1514 cases. The average accuracy
and energy difference across the entire ensemble are 0.973 and 2.68 respectively, due to the size
distribution skewed towards small J’s. Figure 1.(b) shows the averaged histogram of P (σ=1) from
high accuracy configurations in blue, and that of low accuracy configurations in orange. A striking
feature is that most nodes in both cases were predicted with high certainty, as evinced by the peaks
at both ends. In addition, the histogram of low accuracy configurations shows more nodes in the
middle. To investigate whether model’s prediction accuracy may be related to the node classification
probability, P (σ)., we set a threshold probability, Pthr to select nodes whose P (σ=1) ≥ Pthr or
P (σ=1) < 1− Pthr, and calculated an error rate among these nodes as Pthr is varied. As shown
in the inset of Figure 1.(b), the number of misclassified nodes among such nodes went down as we
increase the threshold. This result in turn confirms that most misclassification indeed occur among
uncertain nodes in the middle region of the histogram.

Given there are only a few uncertain nodes, we enumerated top 1000 most probable configurations for
each J in the test set to account for log2 1000 ≈ 10 uncertain nodes. We then calculated the energy
of these configurations and picked the lowest energy configuration as an improved prediction, σ̂top,
of the model. Through this configuration enumeration procedure, we found σmin for additional 1658
J’s. It also discovered configurations whose energy is lower than σmin in 11J’s, outperforming the
round of dedicated simulated annealing.
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Figure 2: Histograms of size (1st row) and local minima (2nd row) for J’s of the entire test set, and
those belonging to the four performance categories.

For those J’s where σ̂top did not match σmin, we ran simulated annealing with σ̂top as a starting
configuration and found σmin for 1709 J’s. As shown in Figure 1.(c), we observed about two orders
of magnitude reduction in the number of sampling steps to reach σmin for σ̂top-seeded simulated.
The minimum number of steps found in ∼ 20% cases was smaller than few hundreds as only one or
two node were misclassified in σ̂top. It should be noted a simulated annealing can be launched from
other configurations in the top most probable set to account for the possibility of σ̂top falling in a
basin that is far away from the one with σmin.

To establish the relationship between the model’s test set performance and the complexity of Ising
energy landscape, we show in Figure 2 the size and local minima histograms of J’s broken down
into the following four categories: (1) where σmin is found straight from the model via argmax
operation, (2) where σmin is found by taking the lowest energy configuration from the top 1000
most probable configurations (including the 11 special cases), (3) where σmin is found by running
simulated annealing from the configuration of (2), and (4) where σmin is not found. We observe that
the average size of J’s and the average number of local minima of the associated Ising Hamiltonian
both increase from (1) to (4), demonstrating the negative correlation between the accuracy of learned
mapping and the complexity of the Ising energy landscape.

5 Discussion

Our work shows that it is indeed possible to use an ensemble of energy landscapes with known ground
state configurations to train a neural network to deduce the ground state configuration of similar
energy landscapes. On our model problem, we deterministically found the ground state configurations
on 50% of the held out test set J’s and stochastically on additional 26% through a graph neural
network and seeded simulated annealing. Although this number may appear modest, we emphasize
that all configurations predicted by the model were extremely low-lying configurations, often in
the vicinity of the ground state configurations. Since the loss function does not include other local
minima—or, for that matter, the energy function itself, we believe that such an informed prediction is
possible only if the learned node feature embedding of GNN captures the complexity of the energy
landscape. Accordingly, the GNN model’s prediction suffers as the landscape complexity increases.

We also present the top configuration enumeration scheme to improve upon the model’s initial
prediction and cover a broad region at the bottom of an energy landscape, where every configuration is
a viable candidate for simulated annealing seed. In fact, we expect many of ground state configurations
in case (4) can be found via parallel tempering [14, 15] from these top configurations.

The contribution of our work is demonstrating that a neural network-based strategy can be used to
find ground state configurations of an ensemble of energy landscapes. The next step is to apply
the framework to a class of scientific problems where the discovery of global minima would have
technological consequences.
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