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Abstract

The interpretability of machine learning, particularly for deep neural networks, is
strongly required when performing decision-making in a real-world application.
There are several studies that show that interpretability is obtained by replacing a
non-explainable neural network with an explainable simplified surrogate model.
Meanwhile, another approach to understanding the target system is simulation
modeled by human knowledge with interpretable simulation parameters. Recently
developed simulation learning based on approximate Bayesian computation is a
method used to estimate simulation parameters as posterior distributions. How-
ever, there was no relation between the machine learning model and the simulation
model. Furthermore, the computational cost of simulation learning is very expen-
sive because of the complexity of the simulation model. To address these difficul-
ties, we propose a “model bridging” framework to bridge machine learning mod-
els with simulation models by a series of kernel mean embeddings. The proposed
framework enables us to obtain predictions and interpretable simulation parame-
ters simultaneously without the computationally expensive calculations associated
with simulations. This framework can provide insights from the simulation based
model of physical sciences to the study of machine learning models.

1 Introduction

The interpretability of machine learning, especially for deep neural networks, is strongly required
when decision-making is required in a real-world application. In recent years, there are many studies
that have addressed the interpretability of neural networks [5, 3, 11]. One of the approaches is to
replace a un-interpretable machine learning model with a simplified surrogate model. This approach
is considered to be a type of model compression. For example, Hara et al. [6] introduced a method
to replace a un-interpretable random forest model with a simple decision tree model, with informa-
tion criterion as a model selection problem; however, there is no method for neural networks. As
another example, “distillation” of a neural network model [7] is one of the representative methods
for model compression to replace a complex model with a simplified model; meanwhile, there is no
interpretability for a small surrogate neural network model. These methods do not provide a clear
pathway toward obtaining interpretability of a neural network.

Another approach to understanding the target system is conducting a simulation that may be outside
the scope of conventional machine learning. Here, we assume a simulation such as multi-agent simu-
lation, traffic simulation, production simulation, or simulation of the dynamics of a physical system,
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Figure 1: Illustration of the algorithm of model-bridging framework.

which are widely used in social and industrial society. Simulation modeling is implemented to de-
scribe the basic law of the objective system, using human knowledge with interpretable simulation
parameters. Recently developed “simulation learning” [8] is a method in which simulation param-
eters are estimated as posterior distributions in the context of machine learning. The simulation
model is treated as an intractable or non-differentiable regression function in simulation learning.
The challenge of simulation learning is a computational cost that is often more expensive than that
of the machine learning model because of the complexity of the simulation model. Thus, if we have
a simulation model for the objective system, we now have two ways to reproduce real data: machine
learning with a statistical model and simulation learning with a simulation model. However, before,
there was no way to relate a simulation model with a machine learning model, such as a neural
network model.

We propose a “model bridging” framework to bridge the un-interpretable aspect of the machine
learning model and the interpretable aspect of the simulation model (Fig. 1). A model-bridging
framework enables us to not only predict a new dataset with high accuracy using a machine learning
model but also obtain interpretable simulation parameters simultaneously without the expensive
calculation of a simulation model.

2 Related Works

We briefly review a series of applications of kernel mean embedding [12] as the building blocks
of the proposed framework. Kernel mean embedding is a framework to map distributions into a
reproducing kernel Hilbert space (RKHS) H as a feature space.

Simulation Learning: “Simulation learning” [8] is a method in which the simulation model is
treated as a regression function fsim(x; θ) by combining a series of kernel mean embedding methods.
Conventional statistical methods of parameter estimation are not applicable owing to the properties
of the likelihood function: intractable or nondifferentiable.

Kernel ABC: Kernel ABC [13, 4] is a method to compute the kernel mean of the posterior distri-
bution from a sample of parameter θ, generated by the prior distribution π(θ). The assumption is
that the explicit form of the likelihood function is intractable, while the sample from the likelihood
is available. The kernel ABC allows us to calculate the kernel mean of the posterior distribution
as follows: First, sample {θ1, ..., θm} is generated from prior distribution π(θ) and pseudo-data
{Ȳ n

1 , ..., Ȳ n
m} as a sample from p(y|x, θj) for j = 1, ...,m. Next, the empirical kernel mean of the

posterior distribution µ̂θ|Y X =
∑m

j=1 wjkθ(·, θj) is calculated, where kθ is a kernel of θ. Weight
wj is calculated by kernel of y [4].

Kernel Herding: Kernel herding [1] is a method used to sample data from the kernel mean repre-
sentation of a distribution, which is an element of the RKHS. Kernel herding can be considered as
an opposite operation to that of kernel ABC. Kernel herding greedily obtains samples {θ1, ..., θm}
by updating Eqs.(1) and (2) in Chen et al. [1].
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Distribution Regression: Distribution regression is a regression for dx-dimensional “distributions”
represented by samples. Meanwhile normal regression is regression for dx-dimensional “point”.
There are several studies of distribution regression, including distribution-to-distribution regres-
sion [15] and distribution-to-point regression [16, 10]. Oliva et al. [15] employ the idea of approx-
imating a density function by kernel density estimation, rather than using RKHS. Szabó et al. [16]
propose the distribution-to-point with kernel ridge regression method on RKHS; however, there are
no methods for distribution-to-distribution regression.

3 Proposed Framework: Model Bridging

We propose a new framework to bridge the un-interpretable machine learning model and the inter-
pretable simulation model. In this study, we assume a machine learning model, such as a Bayesian
neural network (BNN) [14] with a few hidden layers. Meanwhile, this proposed framework is ap-
plicable to any model. Figure 1 shows an overview of the framework.

3.1 Problem Setting, Assumption, and Usage of Model Bridging

We define the problem setting of the model-bridging framework. Let L be dataset
{Xn

1 , Y
n
1 , ..., Xn

L, Y
n
L } (Xn

l ∈ Rn×dx , Y n
l ∈ Rn×dy ), given in the pre-learning phase. The purpose

is to predict ŶL+1,n+1 and simultaneously obtain interpretable simulation parameter θ̂MB
L+1 to repro-

duce YL+1,n+1 = fsim(XL+1,n+1; θ̂
MB
L+1) without the expensive calculation of simulation model

fsim(x; θ) when we obtain new dataset {Xn
L+1, Y

n
L+1}. The assumptions of the problem setting are

as follows. These assumptions are a typical setting for use case of a simulation.

• Existing simulation model fsim(x; θ) with interpretable simulation parameter θ ∈ Rdθ

and a machine learning model fml(x; ξ) that is sufficiently accurate to predict a typical
regression problem while having un-interpretable parameter ξ ∈ Rdξ .

• Cost of simulation learning is much higher than that of learning from the machine learn-
ing model. For example, it takes more than 1 day for simulation learning of one dataset
{Xn

l , Y
n
l } while learning of BNN takes less than minute.

• Dataset {Xn
l , Y

n
l } has dependency of parameter θl for each l = 1, ..., L. Let us assume

the following situation: {Xn
l , Y

n
l } is obtained in one time period with the same conditions,

described as parameter θl, while conditions are changed for the following time period,
described as θl+1.

• Time for off-line calculation of simulation learning is sufficient, while time for prediction
is restricted.

Once we obtain model-bridging function T̂ as a mapping from the machine learning model to the
simulation model, we can obtain an accurate prediction for ŶL+1,n+1 by both the machine learning
model and interpretable θ̂MB

L+1 by the simulation model for new dataset {Xn
L+1, Y

n
L+1} without an

expensive calculation from the simulation model.

3.2 Distribution-to-Distribution Regression Based on Kernel Ridge Regression

We present the regression algorithm between the conditional kernel mean of the machine learning
model µml ∈ H and that of the simulation model µsim ∈ H, as a model-bridging function µsim

l =
T (µml

l ). We develop the algorithm based on kernel ridge regression which is suitable for kernel
mean input and output on RKHS. This is the extension of the distribution-to-point regression method
proposed by Szabó et al. [16] for the distribution output. The formulation to be solved is as follows
as an analogy of normal kernel ridge regression:

T̂ = argmax
T∈F

1

L

L∑
l=1

∥µ̂sim
l − T (µ̂ml

l )∥2F + λ∥T∥2F , (1)

where λ > 0 is a regularization constant. F is a function space of kernel mean embeddings follow-
ing Christmann et al. [2] and ∥·∥F is its norm. The difference from normal kernel ridge regression is
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Figure 2: (A) Experiment of “cavity”, which is a two-dimensional square space surrounded by
walls (gray) on three sides while moving material (light blue) is located on top of the space. (B) The
estimated result of Reynolds number by simulation learning (θ̂sim) and model-bridging (θ̂MB) as a
function of true θ (θtrue).

that the inputs and outputs are kernel means. Therefore, we define kernel κ ∈ F as a function of ker-
nel mean µ ∈ H. We employ a Gaussian-like kernel as κ(µ, µ′) = exp

{
− 1

2σ2
µ
∥µ− µ′∥2H

}
∈ F ,

where constant σµ > 0 is the width of kernel κ and ∥ · ∥H is RKHS norm. The kernel κ is also
a positive definite kernel [2]. Following the representer theorem of kernel ridge regression [9],
the estimated model-bridging function T̂ for new µ̂ml

L+1 is described as µ̂MB
L+1 = T̂ (µ̂ml

L+1) =∑L
l=1 vlµ̂

sim
l ∈ F , where v = (v1, ..., vL)

T = (Gµ + λLI)−1kµ(µ̂
ml
L+1) ∈ RL. Gram ma-

trix Gµ and the vector kµ(µ̂
ml
L+1) are described as the function of κ.

We assume BNN model fml(x; ξ) with a few hidden layers, where ξ is parameter such as weights for
each node and bias terms of each layer. We can obtain the posterior distribution of ξl for l = 1, ..., L
by the Markov Chain Monte Carlo (MCMC) method or variational approximation. The j = 1, ...,m
is the number of parameter samples. Then, the empirical kernel mean of the posterior distribution is
represented as µ̂ml

l =
∑m

j=1 kξ(·, ξl,j) ∈ H for l = 1, ..., L dataset where kξ is kernel of ξ.

After obtaining the kernel mean of µ̂MB
L+1, kernel herding can be applied to sample θ̂MB

L+1 =

{θ̂L+1,1, ..., θ̂L+1,m} where θ̂L+1,j ∈ Rm. The explicit form of the update equation for sample
j = 1, ...,m iteration of kernel herding with kernel mean µ̂MB

L+1 is as follows:

θ̂L+1,j = argmax
θ

L∑
l=1

m∑
j′=1

vlwl,j′kθ(θ, θl,j′)−
1

j

j−1∑
j′=1

kθ(θ, θj′) ∈ Rdθ , (2)

for j = 2, ...,m. For initial state j = 1, the update equation is only the first term of Eq. (2). The
weight of wl,j is calculated by kernel ABC for dataset {Xn

l , Y
n
l }.

4 Experiment

Through computer aided engineering (CAE) simulations, we confirm that our model-bridging algo-
rithm is applicable to the simulation of fluid-dynamics systems. We employ the typical benchmark
in this field, named “cavity flow experiment”, which is shown in Fig. 2 (A). We consider a two-
dimensional squared space called “cavity” fulfilled with fluid having unknown Reynolds number.
The Reynolds number is used to help predict flow patterns and velocities in fluid dynamics. Turbu-
lent flow, in particular, is somewhat difficult to predict, even though it is very common in real-world
situations. In this experiment, input Xi ∈ R is the velocity of the material on top of the cavity;
output Yi ∈ R is velocity at the particular point (see Fig. 2 (A)); and parameter θ ∈ R is the
Reynolds number. The number of data n = 50; the number of samples m = 41; and the number of
dataset L = 41 are generated by different true θl(= θtruel ). The hyperparameter of regularization is
λ = 1.0−5.

Figure 2 (B) shows the estimated result of θ̂sim by simulation learning and θ̂MB by model bridging
as a function of true θ for L = 41 dataset with one-leave-out cross-validation. Dashed line shows
θtrue = θ̂MB(= θ̂sim), so that estimation is accurate if the result is on the dashed line. We can see
reasonable estimation of θ̂MB. Human experts can understand why such flow of fluid is caused by
the Reynolds number.
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5 Conclusion

We propose a novel framework named “model-bridging” to bridge from the un-interpretable ma-
chine learning model to the simulation model with interpretable parameters. The model-bridging
framework enables us to not only obtain precise prediction from the machine learning model but
also obtain the interpretable simulation parameter simultaneously without the expensive calcula-
tions involved in a simulation. We confirm the effectiveness of the model-bridging framework and
accuracy of the estimated simulation parameter simulation of fluid-dynamics.
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