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Abstract

The increasing amount of data in astronomy provides great challenges for machine
learning research. Previously, supervised learning methods achieved satisfactory
recognition accuracy for the star-galaxy classification task, based on manually
labeled data set. In this work, we propose a novel unsupervised approach for
the star-galaxy recognition task, namely Cascade Variational Auto-Encoder (Cas-
VAE). Our empirical results show our method outperforms the baseline model in
both accuracy and stability.

1 Introduction

A main challenge in astronomical photometric surveys, e.g. the Sloan Digital Sky Survey (SDSS)
[1], the Dark Energy Survey (DES) [2] and the Large Synoptic Survey Telescope (LSST) [3], is the
need for object recognition. Their growing scale of collected data in current and future research
makes it impossible for human experts to do classification manually. In previous work, machine
learning and deep learning techniques were introduced to tackle the challenge [4–9], while all of
those methods rely on data sets with labels assigned by experts.

The main drawbacks of previous learning approaches are twofold. On the one hand, labeling as-
tronomical data is a time-consuming, interminable and error-prone job. On the other hand, the
label process introduces prior knowledge into the data set, and cognition bias inevitably results.
Learning through unsupervised algorithms can be a substitute but we need to extract useful fea-
tures for the task; and, in most cases, specific network architecture design or domain knowledge
is needed to achieve better task specific performance [10–13]. Applying previous unsupervised
learning methods into in the domain of astronomy is not straightforward. Specifically, focusing on
the star-galaxy classification task, prevailing unsupervised methods: the Auto-Encoders (AEs) and
Variational Auto-Encoders (VAEs) [14, 15], are not able to provide satisfactory results for they are
designed as generative models, which will learn the most useful hidden representation for identity
mapping from the input space to the output space. Other traditional approaches like t-SNE and
ISOMAP are not suitable to cope with large scale image inputs [16, 17], thus combination of AEs
and manifold learning methods are used [18, 19].

In this work, we propose a method to produce accurate star-galaxy classification by learning directly
from the pixel values of photometric images. Our proposed method, Cascade Variational Auto-
Encoder, improves the vanilla VAE [15] to be more capable in classification tasks. We demonstrate
our method on the SDSS data set that results in remarkable accuracy improvements over baseline
method.
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Figure 1: histograms of pixel values and some image samples

2 Method

In this section we will introduce our proposed solution for the unsupervised star-galaxy classification
task. The dataset we used will be introduced in Sec.2.1. Sec.2.2 provides a detailed mathematical
formalization of the problem, and proposes an improvement over the prior of vanilla VAEs. We
discuss some baseline methods in Sec.2.3, and finally present our solution in Sec.2.4.

2.1 Dataset

The dataset we choose to use in this work is the SDSS dataset. Specifically, we have a labeled subset
Xl and an unlabeled subset Xu. The labeled subset Xl contains 140,000 images, each of which has
the shape of 64× 64× 5, the 5 channels correspond to the u, g, r, i, z bands separately. The ground
truth of their class, i.e. stars or galaxies, are also recorded in Xl. Further information of the objects
like red-shift z and average magnitude are also recorded but not used in our training or evaluation
process. In the unlabeled subset Xu, there are 100,000 images that share the same size with Xl. But
we don’t have ground truth labels for those images. We aim to train our model withXu and evaluate
our method on Xl. Fig. 1 shows the histograms of pixel values and some image samples of Xl and
Xu before normalization.

2.2 Mathematical Formalization

The mathematical formulation of our task is related to the work of Model Agnostic Meta-Learning
(MAML) [20] but we concentrate more on unsupervised classification tasks instead of meta-learning
tasks. Unsupervised classification tasks can be interpreted as functional optimization problems when
we aim to train the model with a labeled dataset and validate on the un-labeled dataset. In such
problems, we have an labeled data set Xl, their corresponding labels Yl and the unlabeled data set
Xu. The optimization objective is

min
f
‖ Yl − f(Xl) ‖2 (1)

where f is a classifier function that maps the original 64×64×5 input images into a one dimensional
scalar, i.e. the predicted label. As we can only learn from unlabeled data in unsupervised cases, we
can only utilize the following objective in our optimization:

min
L,f
L(Xu, f(Xu)) (2)

where f is the classifier that we will use to test our classification model on Xl, and L is a surrogate
loss function to be determined, which varies between different methods. Ideally, optimization to-
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Figure 2: the learning paradigm of our proposed method. Our method can be interpreted as a VAE
with its reproduction loss defined by an AE

wards the direction of minimizing the surrogate loss function L should drive f to be a good classifier
automatically.

With such formalization, the crux is to find an appropriate surrogate loss function L, with which
the optimization goal of Eq.(2) can approximate the goal of Eq.(1). Previous work regard AEs and
VAEs as dimension reduction models and utilize reproduction error as the surrogate loss L, during
which the bottleneck structure of AEs or VAEs can benefit classification due to its low dimension
[21–23]. However, vanilla VAEs take a Gaussian prior in its hidden space to facilitate computation,
and enables generating a consistent image by adding perturbations into the hidden variables before
putting it to the decoder networks. Noticing the N (0, 1) prior is not conducive to unsupervised
classification, Dilokthanaku et al. put forward GMVAE [24], but their work can not scale up to large
scale input images. In our work, as we are interested in separating stars from galaxies, we need to do
two-class object recognition, and a better and more convenient choice is to leverage a double-peak
Gaussian prior to replace the vanilla Gaussian prior in VAEs. Denoting the prior of hidden space as
P (z), we use

P (z) ∼ αN (−µ, σ2) + (1− α)N (µ, σ2) (3)

where α is a weighting factor. Although we can choose to use the proportion of stars and galaxies
as a prior, we choose to use α = 1

2 in our experiments to avoid a dependence on prior knowledge.

2.3 Baseline Methods

In unsupervised clustering, AEs are always utilized to reduce the dimension of input data and Man-
ifold Learning (ML) methods (e.g. ISOMAP, t-SNE) are applied to perform further dimension
reduction and classification [25, 26, 19, 18]. In detail, those methods have three steps. First, such
methods utilize VAEs or AEs to extract features from original images and reduce the dimensions
into dimhid, where dimhid � diminput. Next, they run an ML algorithm to map the d dimensional
dimhid into a one dimensional scalar. Finally, the last step is to use the scalar and a threshold, which
can be determined from prior knowledge like star-galaxy proportion, to perform classification. In
our experiments we will use the method of combining VAEs and ML as baseline.

3



TP
R

FPR

(a) VAE+ML

TP
R

FPR

(b) DKL-VAE + ML

TP
R

FPR

(c) CasVAE

Figure 3: ROC and AUC of each method, (a) VAE + ML as baseline; (b) VAE with double-peak
Gaussian prior + ML; (c) Cascade VAE. Points with different colors shows different thresholds
(dark/blue color shows smaller threshold and light color shows larger threshold). The red points in
each figure shows the point closest to the (0, 1) point

Table 1: Performance comparison of each method, VAE + ML is the baseline method and DKL-VAE
+ML is based on our improvement of the Gaussian prior used in VAE. Results are averaged by 100
experiments

Method Mean AUC Highest AUC Lowest AUC
VAE + ML 0.75 0.89 0.61
DKL-VAE + ML 0.84 0.92 0.74
CasVAE 0.90 0.91 0.90

2.4 Cascade VAE

Our proposed method, namely Cascade VAE (CasVAE), introduces a hierarchical structure based on
VAEs to facilitate unsupervised classification. Based on previous work, most successful generative
models often use only a single layer of latent variables [27, 28], and multiple layers only show
modest performance increases in quantitative metrics such as log-likelihood [29, 30]. We choose to
use shallow neural networks in our model and separating the dimension reduction process and the
classification process.

The modelling ability of VAEs varies when using different number of hidden units. While more
hidden units lead to sufficient representation ability, less hidden units prompts higher level fea-
tures, which is more useful for classification [31]. To address this trade-off problem, we proposed
a cascade structure. In the first phase of our model, we focus on the dimension reduction part of
unsupervised classification, where a normal AE with 30 hidden units is utilized. We apply batch
normalization (BN) [32] in AE to bridge the gap between different data distributions. The effect of
AE in our model can be interpreted as an low-level feature extractor. In the second phase, we utilize
a VAE with 2 hidden units in its hidden layer for classification. The first of the two hidden units
follows the vanilla VAE to use a simple Gaussian prior and is used to store information useful for
VAE-reproduction. The second hidden unit is equipped with a revised Double-peak Gaussian prior
to encourage separation. Fig. 2 shows our architecture, which can be interpreted as a two-channel
VAE with its loss function defined by an AE.

3 Experiments

We approximate the calculation of KL-divergence in VAEs in several ways after we introduce the
double-peak Gaussian prior in Eq.(3). We evaluate our method based on 4 different kinds of substi-
tutes of KL-divergence. Those loss terms are double-peak KL-Scaling (DKLSC), double-peak KL
(DKL), Wasserstein loss (W) and pseudo Wasserstein loss (PW). More details on the calculation can
be found in Supplementary materials

In our experiment, we use the Receiver Operating Characteristic curve (ROC) to visualize the clas-
sification results and use Area Under Curve (AUC) to evaluate the performance of our models. We
use grid search for the selection of hyper-parameters and repeat each experiment with different ini-
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tializations to test the stability of each method. Fig. 3 shows some of our results, We first tried VAE
+ Manifold Learning (VAE+ML) and show the ROC curve in Figure Fig. 3(a). Fig. 3(b) shows
our results with a double-peak Gaussian prior. Finally, Fig. 3 (c) shows our result when we use the
Cascade VAE method (CasVAE).

The first two methods are quite sensitive to the initialization of the neural networks in our exper-
iment. The instability mainly comes from the manifold learning algorithm we use after VAEs.
Specifically, Manifold learning algorithms are often sensitive to the outliers. While there are many
multi-object images in our dataset, i.e., stars and galaxies may appear in the same image, the predic-
tion we hope to make is on the class of the object in the center of the image. These mixture images
may be classified according to the central objects in supervised learning by attention mechanism
[33]. But in unsupervised learning and especially in manifold clustering, they are outliers. Our
CasVAE method uses one hidden unit as reproducer and one hidden unit as classifier, so that we can
use the classifier unit to do classification instead of using ML in other approaches. The performance
of each method in terms of AUC is shown in Table 1, indicating the excellence performance of our
method as well as its stability.

4 Conclusion

In this work, we proposed a new approach for unsupervised star-galaxy classification, namely Cas-
cade Variational Auto-Encoder (CasVAE). We highlight two improvements over vanilla VAEs. We
first introduce an AE in CasVAE to perform dimension reduction, simplifying the problem to a great
extent. Moreover, our revision of the Gaussian prior in vanilla VAEs enables CasVAE to abstract
high level features that can be used to perform classification in its inner phase. Compared with
previous approaches, CasVAE is able to achieve the highest star-galaxy classification accuracy with
high stability, which ensures the reproducibility of our proposed method in applications.
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discussions with Binxu Wang, Feng Cheng and Dogezi Song.
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Appendix

A Detailed calculation of KL-divergence

A.1 An scaling technique

DKL

(
N(µ, σ2)‖1

2
N(−m, s2) + 1

2
N(m, s2)

)
=DKL

(
2 ∗ 1

2
N(µ, σ2)‖1

2
N(−m, s2) + 1

2
N(m, s2)

)
≤DKL

(
1

2
N(µ, σ2)‖1

2
N(−m, s2)

)
+DKL

(
1

2
N(µ, σ2)‖1

2
N(m, s2)

)
=− 1

2
log 2

(
s2 + log σ2 − 1

2
(µ−m)2 − 1

2
(µ+m)2 − σ2

)
A.2 Exact solution

DKL

(
N(µ, σ2)‖1

2
N(−m, s2) + 1

2
N(m, s2)

)
=

∫ ∞
−∞

N(µ, σ2) log
N(µ, σ2)

1
2N(−m, s2) + 1

2N(m, s2)
dx

=

∫ ∞
−∞

1√
2πσ

e−
(x−µ)2

2σ2 log
1
σ e
− (x−µ)2

2σ2

1
2s [e

− (x−m)2

2s2 + e−
(x+m)2

2s2 ]
dx

=

∫ ∞
−∞

1√
2πσ

e−
(x−µ)2

2σ2 log
2s

σ
dx

−
∫ ∞
−∞

1√
2πσ

e−
(x−µ)2

2σ2 [
(x− µ)2

2σ2
− (x−m)2

2s2
]dx

−
∫ ∞
−∞

1√
2πσ

e−
(x−µ)2

2σ2 log [1 + e−
2mx
s2 ]dx

=α− β − γ

α = log
2s

σ

β = − (m− µ)2 + σ2 − s2

2s2

γ ≈ −
2m[−σe−

µ2

2σ2 +
√

π
2µErfc(

µ√
2σ

)]

s2

with an approximation of Erfc(x) ≈ 1− tanh(1.19x)

DKL

(
N(µ, σ2)‖1

2
N(−m, s2) + 1

2
N(m, s2)

)
≈ log

2s

σ
+

(m− µ)2 + σ2 − s2

2s2

+
2m{−σe−

µ2

2σ2 +
√

π
2µ[1− tanh(1.19

µ√
2σ

)]}
s2
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