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Abstract

In a wide-range of applications in science and engineering, one often faces
the need to learn complex mappings between independent parameters and
dependent/measured quantities, i.e. the forward and inverse mappings. Building
reliable inverse maps characterizing the conditional posteriors is challenging since
in practice the mappings are seldom bijective. Moreover, it is challenging to
incorporate scientific priors into the learning process. In this paper, we argue that
enforcing self-consistency between forward and inverse models is an effective
regularizer for learning predictive models in scientific applications. In particular,
we develop two different strategies to enforce self-consistency, namely cyclical and
coupled training methods. Using data from a reservoir model simulator, we apply
the proposed approaches for history matching, which is the process of identifying
the distribution of parameters that best explains the observed data. Our results
show that self-consistency is highly beneficial, and both training strategies produce
well calibrated inverse models.

1 Introduction

As computer simulations are becoming more reliable, they are increasingly used to interpret
experimental data or design new experiments. While the details vary widely depending on the specific
application, the basic goal remains to find simulation parameters whose outcome almost mimics
the observed data. If successful, the resulting parameters can provide insights into the underlying
processes of the observed phenomenon, which can in turn be used to plan future experiments.
Mathematically, one solves an inverse problem of mapping the outputs of a given simulation to
the corresponding inputs. In practice, the original simulator is often too expensive to support the
necessary optimization and instead an approximate forward model, also called a surrogate, is fitted to
a given simulation ensemble [1]. This creates two coupled problems: First, fitting a forward model
F : x 7→ y that approximates the original simulation by mapping the inputs x to the outputs y; and
Second, deriving an inverse model G : y 7→ x. Even for complex inputs and outputs, modern machine
learning techniques have proven effective for building forward models [1]. However, the inverse
models are known to be more challenging since they are often ill-posed as F can be non-bijective
with some of the input parameters having little or no influence on the results and for others, multiple
distinct combinations may produce the same outputs.

In this paper, we consider the problem of history matching in reservoir models, an inverse problem
aimed at estimating and calibrating the parameters of a simulator to best match the empirical
observations. Since this estimation process is non-unique, determining a single history matched
model that explains the observed measurements is an ill-posed problem [2]. Consequently, it is
critical to estimate all possible inverse estimations to improve the reliability of a model [3]. In other
words, rather than providing a single response for a given target observation yh one must find the
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(a) Cyclical Training (b) Coupled Training

Figure 1: Proposed training strategies for building deep inverse models in history matching

posterior density on all possible parameter settings, i.e. p(x|y = yh). Since densely sampling the
input space with the original simulator is infeasible, the inverse is typically fitted by using the forward
model as the likelihood function and utilizing statistical learning techniques to infer the posterior.

Especially given a relatively few initial evaluations of the simulator, directly fitting a standalone
inverse model G produces poor results. The most likely reason is that without additional regularization
or any knowledge of physics informed priors, it is difficult to produce meaningful models. Hence,
more recent approaches have resorted to jointly estimating the forward and inverse processes using a
direct coupling scheme [3]. The core idea of our approach is to train an autoencoder to implicitly
represent the relationships between individual outputs and to systematically couple the forward/inverse
models for enforcing self-consistency. In particular, we consider two different strategies, namely
cyclical and coupled training. In the former case, as shown in Figure 1(a), we fit two independent
models for F and G that are explicitly tied together using a cyclical consistency constraint. On the
other hand, the coupled training scheme shown in Figure 1(b) utilizes affine coupling to construct
a single model representing both forward and inverse processes. Though the notion of cyclical
consistency has appeared in several image-image and visio-linguistic [4] applications as an effective
regularization strategy, its efficacy to solve inverse problems has not yet been explored. From
our experiments, we find that both the proposed strategies produce accurate and well-calibrated
predictions, thus evidencing the effectiveness of self-consistency in scientific problems.

2 Proposed Approach

In order to jointly infer the forward and inverse models while enforcing self-consistency between
them, we propose two strategies, namely cyclical and coupled training. Given an experiment design
(e.g. Latin Hypercube) for the input parameters x ∈ RD, we build a forward model F : x 7→ z,
where z ∈ Rd is the latent space inferred using a pre-trained encoder E : y 7→ z. Here, y ∈ RT×k
corresponds to a multivariate time-series output from the simulator comprised of k quantities and
T time-steps. Correspondingly, the inverse G : z 7→ x is used to recover the input parameters from
a sample in the latent space. Our dataset is comprised of tuples {(xi, zi)}, i = 1 · · ·N , where N
denotes the total number of samples.

Constructing the Latent Space. We first train a 1−D convolutional auto-encoder on the
multivariate time series observations {yi} corresponding to the parameters {xi} to obtain the d
dimensional concise latent representations {zi}. More specifically, the encoder is comprised of
five 1-D convolution layers, and the decoder is comprised of 5 transposed 1−D convolution layers
followed by three 1−D convolutions. All layers employ the ReLU activation function.

2.1 Cyclical Training

As illustrated in Fig. 1(a), this approach utilizes two independent fully-connected networks
representing the forward model F and the inverse model G respectively that are tied together through
a cyclical consistency constraint. Note that, the inverse G is designed to produce both mean (µ)
and variance (ν) estimates, and is optimized with the heteroscedastic loss (Gaussian likelihood
assumption). The cyclical constraint ensures that the residuals from the inversion process, r = x− µ,
are controlled by the sensitivities of the forward modelF . The optimization problem can be expressed
as follows:
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(a) Cyclical Training (b) Coupled Training

Figure 2: Illustration of the predictions from our forward models for an example case.

Lcycle = λ1L1 + λ2L2 + λ3L3, (1)

L1 =
∑
i

‖F(xi)− yi‖22, ; L2 =
∑
i

‖µi − xi‖22
2νi

+
1

2
log νi, ; L3 =

∑
i

‖F(µi)− yi‖22. (2)

In our experiments we used λ1 = 0.5 and λ2 = 2 and λ3 = 0.3.

2.2 Coupled Training

The proposed coupled approach model is illustrated in Fig. 1(b). This strategy uses affine coupling
blocks similar to [3, 5] that produce a unified forward/inverse module. Every block consists of
two complementary affine layers that perform a bijective or reversible transformation on the input,
wherein the transformation has a trivial inverse formulation. For example, an input p is first split into
two halves p1 and p2 and then processed using an affine coupling block to produce outputs q1 and q2
respectively. The forward process is given by

q1 = p1 � exp(s2(p2)) + t2(p2) ; q2 = p2 � exp(s1(q1)) + t1(q1). (3)

Correspondingly, the inverse formulation is obtained as

p2 = (q2 − t1(q1))� exp(−s1(q1)) ; p1 = (q1 − t2(p2))� exp(−s2(p2)). (4)

This formulation has an implicit inverse and allows the scaling function s and the translation function
t to be arbitrary neural networks (implemented using fully-connected neural networks in our case).
In order to allow the learned mapping to be bijective, we can optionally introduce additional noise
variables in the output space, which will in turn provide additional degrees of freedom to recover
spatial and multi-modal characteristics of the inputs which may have been otherwise lost during the
forward transformation. More specifically, we assume that the noise variables n ∈ Rp are drawn
from a known distribution (e.g. uniform) and are uncorrelated to the actual output variables. In other
words, F : x 7→ [z,n], and G : [z,n] 7→ x. The hope is that, with a well-trained bijective mapping,
one can perform Monte-Carlo sampling in the joint space of [z,n] and recover the entire conditional
distribution p(x | z). In order to avoid size mismatches during the affine coupling, we pad additional
zeros at the input. Note that, coupled training implicitly induces cyclical consistency and hence does
not require explicit constraints. In order to enforce similarity between the distributions of the original
and the predicted noise variables, we use the Maximum Mean Discrepancy (MMD) [6] loss. Finally,
to enable heteroscedastic loss based learning of the inverse, we propose a single-shot calibration
strategy [7], wherein we generate multiple independent realizations from n and obtain empirical
mean and variance estimates for the inverse, during both training and testing phases. The overall
objective can be expressed as:

Lcoupled = λ1L1 + λ2L2 + λmmdLmmd. (5)

In this setup, we used λ1 = 2 and λ2 = 3 and λmmd = 0.5 to train the network.

3 Results

In this section, we evaluate the proposed approaches on a reservoir model simulation dataset
comprised of N = 2000 samples of D = 14 dimensional input parameters along with their
corresponding outputs with k = 3 and T = 255. We use randomly chosen 1900 samples for training
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(a) Test RMSE of the predictions obtained using our approaches for enforcing self-consistency
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(b) Calibration performance of the prediction intervals for parameters with the lowest RMSE
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(c) Average widths of the prediction intervals for parameters with the lowest RMSE

Figure 3: Performance evaluation of the forward and inverse models.

and the remaining 100 examples for testing. The autoencoder was trained using the architecture
described in Section 2, with the number of latent dimensions d fixed at 14. Upon training we find
that both approaches produce meaningful surrogates (forward model) that can replicate the behavior
of the black-box simulator with high fidelity. Figure 2 shows the predictions from both our proposed
training strategies for one example case. For the coupled case, we computed the mean/variance using
20 random realizations for n. To evaluate the quality of the learned inverse mappings, which is the
focus of this work, we consider the following metrics: (i) RMSE between the true parameters x and
the mean estimates from the inverse model and (ii) empirical calibration where we plot the desired
calibration level α against the observed calibration level (likelihood of containing the true parameter
in the estimated prediction interval). For each α, the corresponding the interval [µi − δi, µi + δi] can
be estimated using ν as δi = z(1−α)/2σi, where z indicates the z−score (z(1−α)/2 = 1.96, for 95%
calibration) and σi =

√
νi. Finally, we also measure sharpness of the prediction intervals as

AWα =
1

N

N∑
i=1

2σi. (6)

Note that, when an estimator is well calibrated, sharper intervals indicate that the model is highly
confident about its predictions.

Our results indicate that both the proposed approaches, due to the inclusion of self-consistency,
produce accurate and well-calibrated inverse mappings. In particular, we find that the cyclical training
produces lower RMSE on an average (Figure 3(a)). Due to the joint inference of both F and G, only
parameters that are most crucial to the forward process are well-calibrated in the inverse model. As
shown in Figure 3(b) and (c), both methods have low calibration errors, i.e. there is high likelihood of
containing the true parameters in the estimated intervals. Interestingly, parameter 12, which had the
lowest RMSE, has sharp intervals (AW0.9 ≈ 0.5), indicating high model confidence, emphasizing
its importance for the prediction. In summary, we find self-consistency to be highly beneficial for
producing meaningful inverse models, and both cyclical and coupled training strategies are effective.
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