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Abstract

Large-scale particle physics experiments face challenging demands for high-
throughput computing resources both now and in the future. New heterogeneous
computing paradigms on dedicated hardware with increased parallelization, such
as Field Programmable Gate Arrays (FPGAs), offer exciting solutions with large
potential gains. The growing applications of machine learning algorithms in parti-
cle physics for simulation, reconstruction, and analysis are naturally deployed on
such platforms. We demonstrate that the acceleration of machine learning infer-
ence as a web service represents a heterogeneous computing solution for particle
physics experiments that requires minimal modification to the current computing
model. As an example, we retrain the ResNet-50 convolutional neural network
to demonstrate state-of-the-art performance for top quark jet tagging at the LHC.
Using Microsoft Azure Machine Learning deploying Intel FPGAs to accelerate the
ResNet-50 image classification model, we achieve average inference times of 60
(10) milliseconds with our experimental physics software framework deployed as a
cloud (edge or on-premises) service, representing an improvement by a factor of
approximately 30 (175) in model inference latency over traditional CPU inference
in current experimental hardware. A single FPGA service accessed by many CPUs
achieves a throughput of 600-700 inferences per second using an image batch of
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one, comparable to large batch-size GPU throughput and significantly better than
small batch-size GPU throughput. Deployed as an edge or cloud service for the
particle physics computing model, coprocessor accelerators can have a higher duty
cycle and are potentially much more cost-effective.

1 Introduction

With large datasets and high data acquisition rates, high-performance and high-throughput computing
resources are an essential element of the experimental particle physics. These experiments are
constantly increasing in both sophistication of detector technology and intensity of particle beams.
As such, particle physics datasets are growing in size just as the algorithms that process the data
are growing in complexity. For example, the high luminosity phase of the Large Hadron Collider
(HL-LHC) will deliver 15 times more data than the current LHC run and the data itself will be at
least an order of magnitude more complex due to higher number of readout channels and particles per
collision. Such a data rate leads to datasets that are exabytes in scale [1]. Future neutrino experiments
such as Deep Underground Neutrino Experiment (DUNE) [2] and cosmology experiments like Square
Kilometre Array (SKA) [3] are expected to produce datasets at the exabyte scale. Concurrently,
improvement in single processor performance is stalling due to changes in the scaling of power
consumption [4]. The current particle physics computing paradigms will not suffice to simulate,
process, and analyze the massive datasets that the next-generation experimental facilities will deliver.
New technologies that provide order-of-magnitude improvements are needed.

The ubiquity of sophisticated detectors with complex outputs has led to the quick adoption of machine
learning (ML) algorithms as tools to reconstruct physics processes. Neutrino experiments currently
use state-of-the-art convolutional neural networks (CNNs) [5–7] for neutrino event reconstruction
and identification. At the LHC, ML methods are used in all stages of the experiments, from sub-
microsecond online filtering applications [8, 9] to low-level calibration of individual reconstructed
particles [10] to high-level optimization of final-state event topologies [11]. Across big science, such
as cosmology and large astrophysical surveys, similar trends exist as the experiments grow and the
data rates increase. While the computing challenge in particle physics is a vital concern for current
and future experiments, it is not unique. With the rise of so-called “big data” across a wide range of
scientific fields, the sophisticated large-scale processing of big data has become a global challenge.
At the forefront of this trend is the need for new computing resources to handle both the training and
inference of large ML models.

In this paper, we focus on the inference of deep ML models as a solution for processing large
datasets [12]; inference is computationally intensive and runs repeatedly on hundreds of billions
of events. A growing trend to improve computing power has been the development of hardware
that is dedicated to accelerating certain kinds of computations. Pairing a specialized coprocessor
with a traditional CPU, referred to as heterogeneous computing, greatly improves performance.
These specialized coprocessors, including GPUs, Field Programmable Gate Arrays (FPGAs), and
Application Specific Integrated Circuits (ASICs), utilize natural parallelization and provide higher
data throughput. ML algorithms, and in particular deep neural networks, are at the forefront of this
computing revolution due to their high parallelizability and common computational needs.

To capitalize on this new wave of heterogeneous computing and specialized hardware, particle
physicists have two primary options:

1. Adapt domain-specific algorithms to run on specialized accelerator hardware.
This option takes advantage of specific human expert knowledge, but can be challenging
to implement on new and ever-changing hardware platforms with different computing
paradigms. New portable development environments (e.g. OpenCL [13]) can potentially
provide cross-hardware solutions.

2. Design ML algorithms to replace domain-specific algorithms.
This option has the advantage of running natively on specialized hardware using open-
source software stacks, but it can be a challenge to map specific physics problems onto ML
solutions.

In this paper, we explore how such heterogeneous computing resources can be deployed within the
current computing model for particle physics in a scalable and non-disruptive way. We will present
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physics results for a publicly available top quark tagging dataset for the LHC [14]. This study focuses
on the newly available Microsoft Azure ML platform that deploys FPGA coprocessors as a service at
datacenter scale [15]. Azure provides a first scalable platform to study, though other such options
exist. Results from this study will serve as a performance benchmark for any similar systems and
will provide valuable lessons for applying new technologies to particle physics computing.

2 Benchmark Model Performance

The computing model for many large scale physics experiments is based on processing events. An
event here is defined as a measurement of some physical process of interest; in the case of the LHC,
it is a collision of bunches of protons every 25 ns. The event consists of complex detector signals that
are filtered, combined, and analyzed; typically, the raw signal inputs are converted into objects with a
more physical meaning. There is both online processing, in which the event is selected from a buffer
and analyzed in real time, and offline processing, in which the event has been written to disk and is
more thoroughly analyzed with less stringent latency requirements. It is important to note that the
basic processing unit is a single event and performing the same task for multiple events (batching)
becomes significantly more complex to manage. Because each event contains potentially millions of
channels of information, it is optimal to load the needed components of that event into memory and
then execute all desired algorithms for that event. The tasks themselves can be very complex, either
with time-consuming physics-based algorithms, or, as is becoming more popular, machine learning
algorithms. There may be dozens or even hundreds of modules executed for each event.

For this paper, we demonstrate performance for one such task of identifying top quarks at the LHC
through the production of collimated sprays of particles in the detector called jets. Jets are common
products for many physics processes, and only jets consistent with a certain structure correspond to a
top quark. Because this task involves highly-correlated and high-dimensionality inputs of lists of
particles, it is an active area of R&D for ML algorithms in particle physics. For this example, we
choose the jet to be represented as a 2D image and use ResNet-50 [16] for this specific task. We
use ResNet-50 as the primary featurizer, then we add our own custom classifier, which comprises
one fully connected layer of width 1024 with ReLU [17] activation and another fully connected
layer of width 2 with softmax activation. The training is performed by minimizing the categorical
cross-entropy loss function using the Adam algorithm [18] with an initial learning rate of 10−3 and a
minibatch size of 64 over 10 epochs on an NVIDIA Tesla V100 GPU. The training for this particular
ResNet-50 model is unique, and performed in steps, because there is a particular quantized version
of ResNet-50 with reduced precision for the FPGA and needs to be “fine-tuned,” or trained with
a smaller learning rate. Therefore, the quantized model is initialized using the weights from the
trained floating point model. Finally, as the quantized model evaluated with the Azure FPGA service
differs numerically from the quantized model evaluated on the local GPU, an additional fine-tuning is
applied to the classifier after evaluating the final ResNet-50 features.

After training, we evaluate the performance of our trained ResNet-50 top tagger. The receiver
operator characteristic (ROC) curve is a graph of the false positive rate (the background QCD jet
efficiency εB) as a function of the true positive rate (top quark jet efficiency εS). It is customary
to report three metrics for the performance of the network on the top tagging dataset: model
accuracy, area under the ROC curve (AUC), and background rejection power at a fixed signal
efficiency of 30%, 1/εB(εS = 30%). Fig. 1 shows the ROC curve comparison for ResNet-50 as
well as the fully retrained featurizer with custom weights. With a background rejection power of
1/εB(εS = 30%) ≈ 1000, the retrained ResNet-50 outperforms the other models developed for this
dataset.

3 Implementation, Latency, and Throughput

One challenge is to integrate FPGA coprocessors into the computing model without disrupting the
current multithreaded paradigm, where several modules process an event in parallel. A natural
method for integrating heterogeneous resources is via a network service. This client-server model is
flexible enough to be used locally by a single user or within a computing farm where a single thread
communicates with the server. In the particular case investigated here, we use the gRPC package [19],
an open-source Remote Procedure Call (RPC) system, interfaced with the Azure system. This setup
defines a communication method between the FPGA coprocessor resources and an experiment’s
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Figure 1: ROC curves showing performance of the floating point and quantized versions (before
fine-tuning, after fine-tuning, and using the Brainwave service) of the ResNet-50 top tagging model.

primary computing CPU-based datacenters. We test the performance of a single task which makes
a request to a single service which performs an access to the Azure platform. We also scale up the
number of simltaneous requests to the Azure system, which is capable of load balancing of service
requests.

For our demonstration study, we use the CMS experiment software framework, CMSSW [20]. A typical
module has a produce function that obtains data from an event, operates on it, and then outputs
derived data. Our goal is to utilize the Brainwave hardware as a service to perform inference of a
large ML model such as ResNet-50. Within CMSSW, a hook to the gRPC system is established using
a special feature called ExternalWork [21].

To summarize the results, for total inference time for a batch of one image, we present Azure, CPU,
and GPU performance in Table 1. The most straightforward comparison with the current CMSSW
performance of 1.75 seconds is the 10 (60) ms on-prem (remote) that it would take to perform
inference with Azure. This represents a factor of 175 (30) speedup for Azure on-prem (remote) over
current CMSSW CPU performance. We can extrapolate from Table 1 that, for more modern versions of
TensorFlow and CPUs, the CMSSW CPU inference time could improve to approximately 500 ms with
a single core. GPU comparisons can be more nuanced depending on the model implementation and
batch sizes. However, for a batch of one image, we can say that the Azure inference latencies, both
on-prem and remote including network latencies, are of a similar order to local, physically connected
GPU inference times. The GPU and Azure have similar maximum throughput, about 660 images per
second, though the former only achieves this with large batch size and the latter achieves this when
accessed with many CPUs simultaneously.

Table 1: A summary comparison of total inference time for Brainwave, CPU, and GPU performance
using the same ResNet-50 model.

Type Hardware 〈Infer. time〉 Max throughput Setup
CPU Xeon 2.6 GHz, 1 core 1.75 seconds 0.6 img/s CMSSW, TF v1.06
CPU i7 3.6 GHz, 1 core 500 ms 2 img/s python, TF v1.10
CPU i7 3.6 GHz, 8 core 200 ms 5 img/s python, TF v1.10

GPU (b=1) NVidia GTX 1080 100 ms 10 img/s python, TF v1.10
GPU (b=32) NVidia GTX 1080 9 ms 111 img/s python, TF v1.10
GPU (b=1) NVidia GTX 1080 7 ms 143 img/s TF v1.10 (internal)

GPU (b=32) NVidia GTX 1080 1.5 ms 667 img/s TF v1.10 (internal)

Azure (FPGA) Altera Artix 10 ms 660 img/s CMSSW, on-prem
Azure (FPGA) Altera Artix 60 ms 660 img/s CMSSW, remote
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4 Outlook

In this first study, we have explored the potential to accelerate computing for growing big science
challenges using coprocessor hardware. Through the acceleration of machine learning algorithms,
we can take advantage of developments beyond our domain in both new hardware paradigms such as
GPUs, FPGAs, and ASICs, and open-source software stacks. Using a representative experimental
software framework, CMSSW, and the accelerator hardware as a web service, we have found a large
speed-up in inference latency for ResNet-50 over what can be achieved with CPUs within CMSSW.
The throughput of the FPGA as a service is also comparable to large-batch GPU throughput when
accessing the FPGA over many CPUs simultaneously. This demonstrates a potentially cost-effective
and non-disruptive integration of heterogeneous computing resources into the experimental particle
physics computing paradigm. While this work is very promising as a solution for future computing
challenges, we must continue to develop the algorithms, infrastructure, and hardware technologies in
order to scale-out this solution for big science.
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