Turbulence forecasting via Neural ODE
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Abstract

Fluid turbulence is characterized by strong coupling across a broad range of scales.
Furthermore, besides the usual local cascades, such coupling may extend to in-
teractions that are non-local in scale-space. As such the computational demands
associated with explicitly resolving the full set of scales and their interactions,
as in the Direct Numerical Simulation (DNS) of the Navier-Stokes equations, in
most problems of practical interest are so high that reduced modeling of scales and
interactions is required before further progress can be made. While popular reduced
models are typically based on phenomenological modeling of relevant turbulent
processes, recent advances in machine learning techniques have energized efforts
to further improve the accuracy of such reduced models. In contrast to such efforts
that seek to improve an existing turbulence model, we propose a machine learning
(ML) methodology that captures, de novo, underlying turbulence phenomenol-
ogy without a pre-specified model form. To illustrate the approach, we consider
transient modeling of the dissipation of turbulent kinetic energy—a fundamental
turbulent process that is central to a wide range of turbulence models—using a
Neural ODE approach. After presenting details of the methodology, we show that
this approach out-performs state-of-the-art approaches.
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1 Introduction

Forecasting the evolution of turbulence is a critical necessity for applications from engineering
design to climate modeling. The range of scales involved in a turbulent flow is characterized by
the Reynolds number, Re. Realistic turbulent flows often have moderate to large Re and involve a
wide range of scales, i.e. large scale separation. Scale separation arises from non-linear interactions
between flow components and processes that are often non-local in space and time. The dynamics at
different scales are often closely coupled and for a truly predictive numerical framework, need to be
well-resolved. Due to the non-linearity of the physics, simulating the entire range of scales is almost
always prohibitively expensive in real-world applications, and therein lies the need to formulate
reduced order formulations that can accurately predict these multi-scale physics.

Direct numerical simulations (DNS) of the entire range of dynamical scale interactions is possible
in a number of idealized canonical flows relevant to applications in weather, and climate modeling.
However, in many engineering applications, only the large scale dynamics have practical relevance. A
common modeling approach, in such a paradigm, is to then resolve (i.e. directly simulate) dynamics
at large scales while modeling the non-linear dynamical interactions between the resolved and the
unresolved scale. These models are commonly phenomenological and heuristic in nature, and fitting,
or calibration, and validation of these models to DNS data, for such idealized flows, constitutes a major
practical hurdle in many fields. This is because it is performed in a cumbersome manner that involves
manually iterating the adjustment of parameters until good matches with the DNS data are observed.
Given the need to tune these engineering models based on high-fidelity turbulence data, in this
manuscript, we develop an automatic methodology for training a family of phenomenology-informed
and properly parameterized reduced models.

Recently, Deep Neural Network (DNN)-based approaches related to modeling fluid problems has
gained wide attention [} [2} 3]]. Prominent among these are approaches based on modeling these
dynamical systems as differential equations [4, |5} 6]]. These methods require replacing the residual
networks (ResNet/RNN) with ordinary differential equations (ODE) [4, [7]], where Neural ODE
(NODE) has emerged as a popular approach. NODE is a supervised machine learning approach
that is based on learning the latent space representations of dynamical equations. It is devised in a
non-intrusive manner without a pre-specified model form, that makes this framework very appealing
for complex, transient, non-linear physics problems as considered here [8, (9, [10].

In this work, we look at a simple system of couple ODEs, wherein we examine the ability of the
NODE approach to effectively learn the temporal dynamics and interpolate in the parameter space to
make predictions for the unseen test case. We are particularly interested in exploring the ability of
the continous-time, generative Latent ODE model [6] within the NODE approach, in which the ODE
integration occurs in the latent space.

1.1 Contributions of this work

In this work, we model the temporal evolution of the turbulence prognostics such as kinetic energy, k,
and its dissipation rate, €, which has emerged as a common reduced system to dynamically model
turbulence [11]. Ground truth data is generated by extracting k and € from a series of DNS datasets,
as described in section 2. We then apply the continuous-time NODE framework to model these time
series [4]. Compared to a discrete-depth network, such as a recurrent neural network (RNN), a
NODE model can learn trajectories which may be sampled at arbitrary frequencies with standard
ODE solvers [4}15,16] and hence is particularly well suited for physics problems.

Results from our experiments indicate that the NODE approach outperforms predictions from existing
state-of-the-art models [12] in the settings we consider. We observe NODE models to consistently
remain within 1-2% error with respect to the DNS solutions, almost two orders of magnitude less than
state-of-the-art models. With these simple but fundamental experiments, we suggest that an automatic
approach to training phenomenological reduced models for more complex turbulence phenomena,
such as is necessary to integrate into existing climate models, is both practical and effective.



2 Problem Background

A common turbulence model solves for the turbulent kinetic energy k& and its dissipation rate e [[L1]],
as:
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where v is the fluid kinematic viscosity, o, ¢, Ce1, Cea are model constants, and 1, = CHkQ /€ is
the turbulent viscosity where C,, is another model constant. Here, most constants can be derived
from asymptotic analysis in low- or high-Reynolds number limits, where the Reynolds number is a
measure of turbulent scale separation, defined,
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At intermediate Reynolds numbers, where turbulence transverses asymptotic limits, there is little
theoretical justification for appropriate constants, yet it is well-accepted that C.o has functional
dependence on large-scale turbulence properties and Re when 1 < Re < 100 [seel12| for a review].
The case of the parameter C'5 is particularly interesting, because under assumptions of homogeneity
and isotropy, equations (I) and (2)) are reduced to two coupled ODEs, wherein Cl is the only model
parameter and the system is defined by:
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Despite the simplicity of this reduced model, modeling the parameter C.o as a function of the
large-scale fluid state is still an active research area for parameter regimes outside of asymptotic
limits. A statistical description of turbulence at large length-scales is the power-law behaviour of

kinetic energy k at small Fourier wavenumber,

k(€] o< [¢] for [¢] £ & (5)

where k is a function of the L2 norm of the wavenumber vector £, and &; is the integral wavenumber.
Indeed, the selection of C.5 is known to significantly depend on the parameter pq [13][14], leading to
complex and nonlinear functional forms for C.o which adjust the model (@) to arbitrary values of
po (such as proposed by [12]]). These models are enabled by constants and functional forms derived
from data and regression from high-fidelity simulation. Given the dependence of these canonical
models on high-fidelity turbulence data, it is reasonable to approach the prognostic modeling problem
from a purely data-driven perspective with physics-inspired constraints for efficient and tractable
numerical simulation.

3 Models

3.1 Direct Numerical Simulation

In order to evaluate the tractability of modeling turbulent decay by data-driven methods, we develop
a series of numerical experiment by simulating the governing equations of fluid motion, the Navier-
Stokes equations, directly with robust Fourier spectral method [c.f.15]].

Turbulence is initialized by forcing the low-wavenumber power spectra at various pg to an appropriate
form via a linear scheme suggested by [16] and for the parameters summarized in Table [ The
parameter space has been designed to investigate Reynolds number regimes where existing models
poorly calibrate and a range of py observed in geophysical and engineering flows.

Once the flows are statistically stationary, the forcing is turned off and the turbulence is allowed to
decay. The process is repeated for three realization of each parameter combination in order to sample
the data variability.
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Figure 1: Evolution of (a) the Reynolds number and (b) the kinetic energy dissipation rate, scaled by

theoretical decay exponents corresponding to pg = 2, for single realizations of the cases described in
TableE} Note the strong dependence of the evolution of € on Re and pg after ¢ ~ 2.

Trajectories of the Reynolds number and € are Case Reg  po N

shown in figure E], where time has been appropri- Rel00P20 9985 2.0 5.5x10°
ately non-dimensionalized by a turbulence time- RelOOP24 9961 24 7.1x10°
scale. Our objective is to discover a Re-dependent RelOOP28 1007 2.8 9.0x10°
model with pg as a parameter which outperforms RelOOP32 1002 32 1.1x107
existing state-of-the-art models. RelOOP36 1003 3.6 1.4x107

Rel0O0OP40 1004 4.0 1.7x107
3.2 Neural ODE for time-series
Table 1: Simulation database, each case is sim-

We use the continuous-time, generative Neural ODE  ulated with three realizations. The number of
approach called Latent ODE [4], section 5], to datapoints in each simulation is denoted by IV,
model the turbulent kinetic energy dissipation from each simulation is run for over 5,000 timesteps.
the DNS data presented in the previous section. In

the context of time-series, the model represents each observation by a latent trajectory, z;, determined
by

dz

o = 19) (6)
where f specifies the dynamics of the hidden state of the network itself and ¢ is the set of neural
network parameters. The model has three different parts to it. First, a recognition recurrent neural
network (RNN) reads the observations from the DNS data backwards in time in order to determine an
initial latent representation, z for each observation (k and €). Second, this initial latent representation
is used as an input to the ODE solver together with a function f, parameterized by a neural network,
and is used to obtain latent space observations at all given times:

2ty Pty Bty ey 2ty = ODESolve (24, f, 05, t0,t1,t2, ..., tN) @)

In the third and final step, the latent space observations are decoded back to data space by another
network. Training is performed by optimizing the parameters of the networks at each part (recognition
RNN, ODE function, and decoder) in order to minimize the error between input and output or, in the
context of a variational autoencoder [[17,|18]], maximize the the evidence lower bound (ELBO).

One of the main advantages of the latent ODE approach in the prediction of time series data lies
in the fact that the previously shown function f is time invariant. This means that given a latent
state, z;, one can define a unique latent trajectory. Therefore, a model trained to fit any given set
of observations is able to extrapolate the latent trajectory arbitrarily far forwards (forecasting), or
backwards in time [6]. Alternatively, one could also train the model on a given set of input parameters
and generalize a solution to a new parameter value not seen during training.

In this work, we tested a latent ODE model architecture for deriving a turbulent kinetic energy
dissipation model sensible to various pg values. The RNN encoder has 25 hidden units and 4 units in
the latent space. The function f is parameterized with a fully-connected (FC) layers network with
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Figure 2: Comparison of models for the evolution of dissipation rate, scaled as in ﬁgure Panels (a)
and (b) show the purely data-driven model, which accounts for changes in Re and py, to capture the
trends of the ground truth much closer than the state-of-the-art analytic model [12]. The same is
observed for the testing case in panel (c), whereas panel (d), which quantifies the error with respect to
the ground truth data, illustrates that the NODE predictions stay within 1-2% of the DNS solutions.

one hidden layer containing 20 hidden units. The decoder has a similar network, also with 20 hidden
units. We train the model with DNS results on a given set of large scale turbulence properties (such
as pp) and attempt to generalize a solution for a new set of unseen test conditions.

4 Experimental Results

Data-driven models are compared to state-of-the-art analytic models [12] in figure[2] Recalling that
our objective is to capture transient Re and pg dependence in the evolution of turbulence prognostics,
we compare against a model which accounts for these two parameters with complex and non-linear
sub-models. We have selected an intermediate case Re100P32 for testing for the results presented
here, but observed qualitatively similar behaviour when other cases have been held-out in cross-
validation. The training sets are shown in figures ,b, which illustrate the capability of the Neural
ODE model applied to time-series data to represent the evolution of the turbulent kinetic energy
dissipation rate. The performance of the purely data-driven approach for the testing case is shown
in figures 2c,d. We observe that while both models accurately predict the initial period of decay
for t < 2, the analytic model over-estimates the dissipation rate for later times. We believe these
observations are due to the analytic ODE model poorly capturing low Reynolds number effects in the
final stages of decay (see figure[Th). In comparison, the purely data-driven Neural ODE approach
accounts for this transient such that it more accurately forecasts the dissipation rate at later times.

S Conclusions and future applications

We have proposed a well-constrained, fundamental physics problem for the application of data-
driven modeling via Neural ODEs. By comparison with state-of-the-art models for the equivalent
problem, we have demonstrated that the Neural ODE model more accurately predicts the evolution
of the dissipation rate at multiple forcing objectives (as defined by pg), which is a testament to the
generalizability of the framework. This result is encouraging for the development of models for more
complex turbulence phenomena, such as model flow configuration relevant to geophysical turbulence
as used in climate models, where the evolution of additional prognostics are necessary to model.
These prognostics, such as the flux energy between kinetic energy and gravitational potential energy
reservoirs, are currently poorly parameterized [19] and outperforming data-driven approaches have
an opportunity to immediately benefit such existing models. Another area of future investigation is
to explore the interpretability [20} 21, 22] of these black-box ML models, such they can be better
generalized to more complex physics problems.
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