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Abstract

Real-life applications of recently proposed graph-based neural network architec-
tures are investigated. Sensors of the planned next-generation calorimeter of the
CMS detector at the CERN Large Hadron Collider are represented by graph ver-
tices, embedded into high-dimensional latent spaces, where features associated to
each vertex are updated according to spatial distances calculated in these spaces.
Challenges in applying these algorithms to a real-world detector are described, and
concrete applications are laid out.

1 Introduction

Machine learning (ML) has been, and will increasingly be, a key ingredient to all aspects of high-
energy physics (HEP) experiments, such as those conducted at the CERN Large Hadron Collider
(LHC). HEP data processing routinely involves tasks such as reconstruction of particle trajectories
through the detectors (clustering), identification of particle types (classification), and measurement of
particle energy and momentum (regression), which are all essentially high-level pattern recognition
problems. Traditionally, domain-specific algorithms would perform the basic parts of such tasks,
extracting high-level features from the raw input, and ML algorithms such as Boosted Decision Trees
are applied to these features to enhance the precision of the final results. However, as a result of both
the increasing complexity of the particle detectors and the technological improvements in the domain
of deep learning (DL), more holistic, end-to-end approach, where the raw input is directly passed to
ML algorithms, is gaining attention.

So far, common methods of raw-input processing with DL in HEP have been to cast the particle
detector readout as a two- or three-dimensional pixelated image, on which a standard convolutional
neural network (CNN) is applied [1; 2; 3; 4]. While this approach benefits from having highly
optimized CNN libraries already available, it may fail to extract the true performance potential of the
detector, whose complex three-dimensional geometry usually does not fit readily into a rectangular
grid. Moreover, detectors at collider experiments are usually designed so that the occupancy1 does
not exceed 10-20% even in the highest-multiplicity events. This means that the pixel images fed
to CNN are sparse, possibly costing more computing resource than necessary for the amount of
information being processed.

Learning functions over sparsely and irregularly distributed points is a task that is handled well
by graph-based neural networks [5]. Particularly, Qasim et al. [6] recently proposed two novel

1Detector occupancy is defined as the ratio of the number of readout channels with particle signals to the
total number of readout channels.
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DL architectures based on graph networks, where detector channels with non-null readout, or
hits, are represented as vertices of graphs. The architectures, dubbed GRAVNET and GARNET,
translate semantic affinity of the vertices into geometric proximity in high-dimensional latent space,
where features associated to each vertex are more strongly affected by objects closer to it (distance-
weighted feature update). In GRAVNET, the vertices interact with each other, while in GARNET, the
interactions are with central aggregator nodes. Both architectures rely only on commonly available
tensor-manipulation operations, such as fully connected layers, that are used in CNNs. However,
unlike CNNs, these architectures require no conversion (preprocessing) of detector readout into
rectangular-grid images, and are able to maximally utilize the spatial information of irregular detector
geometries.

The GRAVNET and GARNET architectures were developed in view of applications for the next-
generation endcap calorimeter of the CMS detector, to be installed for the High-Luminosity LHC
phase (Phase II) [1]. The High Granularity Calorimeter, or HGCAL, will be a sampling digital
calorimeter comprising hexagonal arrays of silicon sensor cells interleaved with absorber layers. In
the current design, the smallest sensor cells are 0.52cm2 in area, with the distance between the centers
of the nearest-neighbor cells at 0.4cm. There will be approximately 6 million readout channels in the
HGCAL alone. The HGCAL is also designed to partake in the level-1 (hardware) trigger system of
the CMS detector, where potentially interesting proton collision events must be identified from the
patterns of energy depositions within 5µs latency. Thus, GRAVNET and GARNET must operate over
O(105) vertices (considering the detector occupancy) and some version of them must run on field
programmable gate arrays (FPGAs).

However, to better focus on the characterizing the network architectures and not the nontrivial HGCAL
geometry, the studies reported in Ref. [6] were performed on a simulation of a toy calorimeter, which
possesses a layered structure similar to the HGCAL, but is much smaller and is made of non-uniform
but rectangular arrays of sensors. Moreover, while the inference times of the GRAVNET and GARNET
layers are reported in comparison with other DL architectures, no dedicated attempt was made to
optimize the layers for the latency demanded in the level-1 trigger.

In this paper, we report on the progress of the initial studies of applications of GRAVNET and GAR-
NET to the HGCAL. After a summary of the architectures, additional steps to make them applicable
to the HGCAL readout are presented. Finally, a list of currently pursued and potential applications is
given.

2 The GravNet and GarNet layers

The GRAVNET and GARNET layers both receive as input a B × V × FIN data set, consisting of
a batch of B examples, each represented by a set of V detector hits, embedded in the network set
through FIN features. For instance, the FIN features could include the Cartesian coordinates of a
given sensor, its address (layer number, module number, etc.), the sensor time stamp, the recorded
energy, etc. Within the layers, the FIN features are first converted into S-dimensional coordinates in
a latent space by a dense2 layer. Another dense layer reinterprets the same FIN features into FLR

features of the vertices in this latent space. The FLR features then undergo a distance-weighted
update in the latent space, and are fed into the final dense layer together with the original FIN features,
ending up in FOUT features. The output data set thus has a shape B × V × FOUT, allowing multiple
chained application of the same layers.

The two layers differ in the distance-weighted feature update algorithm. In GRAVNET, each vertex
receives the FLR features of the N nearest neighbors in the S-dimensional latent space, weighted
(multiplied) by a Gaussian function of the distances to the corresponding neighbor vertices. The
weighted features are aggregated over N using the maximum and the mean function, and the result
is taken as the updated features of the vertex. On the other hand, in GARNET, S coordinates are
interpreted as one-dimensional distances to S aggregator nodes. The FLR features of each vertex are
passed to the aggregator nodes with weights given by the negative exponential of the distance to the

2Here and in the following, dense layer refers to a learnable weight-matrix multiplication and bias vector
addition with respect to the last feature dimension, with shared weights over all other dimensions. In this case,
the weights and bias are applied to the vertex features FIN and shared over the vertices V . This can also be
thought of as a 2D convolution with a 1× 1 kernel.
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aggregator. At the aggregator, each of FLR features are reduced to their maximum and mean over V .
The resulting features are passed back to the vertices, weighted by the same exponential function.

The main advantage of the two architectures comes from the fact that the FOUT output (unlike the
FIN input) carries collective information from each vertex and its surroundings, providing a more
informative input to downstream processing. Furthermore, the explicit distinction between learned
spatial coordinates S and learned features FLR allows a better understanding and control of the
network behavior.

3 Supporting developments for real-life applications

3.1 Spherical and quasi-cylindrical coordinates

A spherical coordinate system, given by the distance from the origin r, polar angle θ, and azimuthal
angle φ, or a quasi-cylindrical coordinate system, given by the distance from the zenith axis ρ,
pseudorapidity η = −ln tan(θ/2), and azimuthal angle φ, are more suitable than a Cartesian
coordinate system for describing the positions of the hits in a collider detector. When the original input
features FIN are given in terms of such coordinate systems, all mappings of the vertex coordinates into
latent spaces should preserve the S1 topology of the azimuthal coordinate. Coordinate transformation
layers using trigonometric functions are newly developed for this purpose.

3.2 Definition of ground-truth

As discussed in Section 4, identification of the species of the particle associated to a cluster of
energy deposition is one of the fundamental tasks. However, the concept of particle species is
not always clear-cut in a real-world collider environment. A classical example where the particle
species becomes ambiguous is an electron that emerges from the interaction point and undergoes
a bremsstrahlung, reaching the calorimeter surface accompanied by a near-collinear photon. If the
clusters of energy depositions of the electron and the photon do not overlap, it is natural to identify
each cluster separately as an electron and a photon. If, on the other hand, the clusters fully overlap, it
should be identified as an electron. However, the clusters can also partially overlap, necessitating a
threshold for the degree of overlap, beyond which two clusters are associated with one particle, to be
set.

While DL models for particle identification cannot be trained without a stable definition of ground-
truth, this threshold for the overlap also depends on the ability to resolve overlapping clusters of the
actual DL model in use. Therefore, ground-truth definition is considered as an iterative procedure
where truth definition itself is tuned together with the model hyperparameters to achieve the ultimate
particle identification performance.

3.3 Prediction of unordered sets

The task of cluster reconstruction in the calorimeter can be regarded as a problem of set prediction
with unknown cardinality. It is a set prediction because the resulting clusters do not have inherent
ordering, and the cardinality is a-priori unknown in an end-to-end reconstruction because only the
raw detector readout is provided as the input to the network.

The difficulty of set prediction is in the combinatoric redundancy of the output labeling. Recently,
several approaches for solving general set prediction problems have been proposed [7; 8]. However,
these algorithms still consider all permutations of output labels at some point in the execution,
which becomes a prohibitively expensive operation for reconstructing O(10) or more clusters. More
efficient set prediction algorithms and / or formulations of the cluster reconstruction problem that do
not involve set predictions are being investigated.

3.4 Memory footprint reduction

As mentioned in Section 1, the graph networks must process O(105) detector hits. From a resource
usage perspective, it is not trivial and may be impossible to fit all hits in one graph network. In
particular, the GRAVNET layer involves a computation of V × V adjacency matrix, requiring a large
amount of RAM.
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Two parallel solutions are investigated for this problem. One is to improve the memory efficiency
of GRAVNET using variable-length arrays and considering that not all V × V adjacency values are
needed at once. The other solution is to divide the HGCAL into small patches and perform the particle
reconstruction in each patch independently, then connecting the pieces back together consistently.

3.5 Firmware implementation

The GARNET layer has been translated to register transfer language (RTL) to be synthesized into
FPGA logic with the HLS4ML [9] toolkit. A realistic FPGA implementation of a graph-based
network must utilize much less computational resource compared to its counterpart that executes
on CPUs or GPUs. Even just for RTL translation, the architecture complexity has to be reduced
significantly by e.g. using only the mean aggregation and omitting the appendage of input features
to the output array. To further reduce the size of the synthesized gate-level representation, several
optimizations, ranging from reducing the floating point precision to using bit shift operations in place
of the exponential distance weighting, are being considered.

4 Applications on the CMS HGCAL

The GRAVNET and GARNET layers are designed to be generic pattern recognition engines. With all
the supporting developments in the previous section complete, these algorithms can be applied for
any combinations of the following tasks.

• Noise reduction. Distinguish hits caused by real particles from those due to electronic noise
in the sensor or the readout devices.

• Cluster reconstruction. Associate hits due to the same incoming particle. In case of
overlapping energy depositions from multiple particles, possibly assign energy fractions to
individual hits, such that overlapping clusters share parts of the reconstructed energies of
the hits.

• Pileup discrimination. Pileup interactions are additional particle collisions that occur
simultaneously with the collision of interest (hard scattering). The product of pileup
interactions are typically low-energy hadrons and photons, which would not penetrate
deeply into the HGCAL detector volume. By possibly additionally utilizing the information
from the inner tracker of the CMS detector, flag the reconstructed clusters from products of
pileup interactions, thereby improving the overall description of the hard-scattering event.

• Particle species identification. Given a cluster, associate a species of the particle that made
the energy deposition.

• Energy regression. Given a cluster, provide a accurate prediction of the energy of the
particle that made the energy deposition.

As the installation of the HGCAL is the most significant upgrade of the CMS detector towards the
LHC Phase II, there are significant efforts within the CMS collaboration to fully understand the
detector behavior and to develop algorithms that optimally exploits its potential. The applications of
GRAVNET and GARNET to HGCAL reconstruction will be studied in this context, and the results
will be made public through the CMS collaboration in the near future.

5 Conclusion

To effectively process particle detector readout, which is often sparse and is spatially distributed in
irregular geometries, graph-based neural network architectures have been proposed as alternatives to
the convolutional neural networks. The two architectures, the GRAVNET and GARNET layers, have
been demonstrated on toy calorimeter models, and are now being adapted to real-world use in the CMS
High Granularity Calorimeter. Progress has been made in understanding features and requirements
that do not exist in toy models. The investigations are made in the context of CMS upgrade studies,
with the results expected to be reported by the CMS collaboration in public documents.
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