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Abstract

We present a Bayesian machine learning architecture that combines a physically
motivated parametrization and an analytic error model for the likelihood with a deep
generative model providing a powerful data-driven prior for complex signals. This
combination yields an interpretable and differentiable generative model, allows
the incorporation of prior knowledge, and can be utilized for observations with
different data quality without having to retrain the deep network. We demonstrate
our approach with an example of astronomical source separation in current imaging
data, yielding a physical and interpretable model of astronomical scenes.

1 Introduction

Deep Learning is extremely efficient at solving a wide range of inverse problems, but what is gained
in performance is often lost in interpretability due the black box nature of deep neural networks. In
scientific applications however, the interpretability of the solution is often paramount, as is the ability
to imbue pre-existing physical knowledge directly into the model. To this end, we propose an hybrid
model based on solving for the Maximum A Posteriori (MAP) solution of an inverse problem, where
a physical model is used to describe the forward data acquisition process, and a deep generative
model with explicit likelihood is used to provide a complex data-driven signal prior.

Related Work With the success of deep learning in many classical imaging problems [e.g. 1], a
significant amount of effort has been aimed at linking deep learning successes back to the classical
inverse problems literature. Several avenues have been explored, e.g. learning a denoiser as an implicit
proximal operator [2]; using a generative model as deep image prior [3]; learning a convolutional
dictionary and proximal operator [4]; or learning implicitly both the prior and the inference algorithm
itself [5]. Finally, most closely related to our work, [6] introduces the idea of modeling the prior
explicitly at the pixel-level using a deep generative model.
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2 Problem statement

We consider a general linear inverse problems of the form:
y = Ax + n , (1)

where y are the observations, x is the unknown signal to recover, A is a linear degradation operator,
n is some observational noise. This problem describes a wide range of applications from MRI to
radio-interferometry through different choices of the operator A.

In the Bayesian approach to inverse problems, the posterior p(x|y) can be expressed as
p(x|y) ∝ p(y|x) p(x). (2)

• The data likelihood term p(y|x) encodes our physical understanding of the forward process
that leads to the observations. We assume here that for a given x, this term can be evaluated
explicitly given our physical model.

• The prior term p(x) encodes our prior knowledge on the solution we seek to recover. This
prior can be informed by prior experiments, complementary data, or physical considerations.
A tractable expression of this prior can often be obtained only for simple signal classes.

While the Bayesian solution to such inverse problem is the full posterior p(x|y), in many practical
applications the full distribution is typically reduced to a single point estimate, i.e. the Maximum A
Posteriori (MAP) solution

xMAP = arg max
x

log p(y|x) + log p(x) . (3)

We will exploit this separable representation, limiting the use of deep learning to the prior term p(x).

Model for the data likelihood With a given operator A, the likelihood term is completely charac-
terized by the noise model for n. We assume a Gaussian noise model, i.e. n ∼ N (0,Σ) where Σ is
the noise covariance. In this case log p(y|x) = − 1

2‖y −Ax‖2Σ−1 + cst, where ‖x‖2M = x>Mx.

Deep generative models as complex data priors Models like Variational AutoEncoders (VAEs)
[7] and Generative Adversarial Networks (GANs) [8] have been extremely successful, but they do
not provide an explicit likelihood p(x). Instead we choose to rely on pixel autoregressive models
[9, 10, 11] which provide an explicit likelihood, factorized into separate conditional distributions
pθ(x) = Πipθ(xi|x0 . . . xi−1) where θ are the weights of the model. These models achieve state
of the art performance, are stable during training, and do not suffer from mode collapse (contrary
to GANs). Our prior model is trained on uncorrupted examples of data x, which may come from
simulations or from high-fidelity observations.

Physical constraints as proximal regularization terms In this approach, most of the prior in-
formation stems from the data-driven deep generative model pθ(x). However, additional physical
constraints on the solution can applied by adding regularization terms to the prior: log p(x) =
log pθ(x) +

∑
j Rj(x). The regularizers may be non-differentiable as long as they can be expressed

by their proximal operators proxRj
(x). As an example, the flux of astronomical sources is a positive

quantity, we may therefore want to impose a non-negativity constraint ι>0(x) on the solution, using
the associated proximal operator proxι>0

(x) = max(0, x).

Combining all these elements, we can characterize our xMAP solution as the minimum of the
following loss function:

L =
1

2
‖y −Ax‖2Σ−1 − log pθ(x) +

∑
i

Ri(x) ≡ f(x) + g(x) + r(x) . (4)

The two first components of this loss are differentiable and therefore amenable to gradient descent.
Due to the presence of non-differentiable regularizers, the optimization makes use of the iterative
Proximal Gradient Method (also known as forward-backward splitting [12])

xt+1 = prox
λt r

(xt − λt∇(f + g)(xt)) , (5)

which converges to a minimum of L if the step size λ is smaller than 2/L, where L is the Lipschitz
constant of the gradient term.
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(a) Observed Scene (b) Sky Model (c) Residuals

(d) Individual components of the model

Figure 1: Deblending of a scene from the HSC imaging survey using the proposed model. The sky model
(b), composed of individual sources (marked in white) with their own morphology and SED, is fitted to the
observations (a). A subset of the individual recovered components are shown in (d).

3 Application: deblending galaxy images

Modern wide-field cosmological surveys cover large areas of the sky with ever increasing imaging
quality [e.g. 13, 14]. They often seek to simultaneously address many scientific goals, e.g. mapping
the large scale structure of the Universe to answer fundamental questions on the nature of Dark
Matter and Dark Energy. One outstanding challenge faced by all modern imaging surveys is the
overlap of several sources (stars and galaxies) on the sky, so-called "blending". It complicates the
measurement of properties of individual members of the blend. This problem constitutes a typical
instance of blind source separation, which attempts to separate all components of a blended scene
without a priori knowledge of their nature (see Figure 1). A GAN-based approach to deblending was
introduced in [15] but suffers from the typical limitations of black-box deep learning models, i.e. it
cannot account for different observing conditions or noise levels without retraining the full model, is
limited to separating two components, and has no test-time flux preservation.

We propose to address the deblending problem using the analytic model of the scene introduced by
[16]. Given an astronomical scene y ∈ RB×N×N observed in B bands (i.e. using multiple filters),
each source k in the scene is modeled with a non-parametric shape Sk ∈ RN×N and an amplitude
Ak ∈ RB , the so-called Spectral Energy Distribution (SED), which determines how bright the object
will appear in each band. Multiple sources contribute additively to the scene, which is correct in the
absence of absorbers, e.g. inter-stellar dust. The forward model also needs to account for degradation
of the image caused by the atmosphere and the instrumental optics. This can be described as a
band-wise 2D convolution by a Point Spread Function (PSF). We denote P as block-diagonal linear
operator implementing the convolution in each band by the appropriate PSF. It acts as the operator A
in Equation 1. Our full physical model for the scene can now be expressed as:

y = P

K∑
k=1

ATk × Sk + n (6)

where n ∈ RB×N×N is typically assumed to be Gaussian noise with covariance Σ. The deblending
problem is to recover an estimate of both the morphology Sk and the SED Ak of each component
of the blend, subject to additional constraints such as positivity of the source emission (Sk > 0 and
Ak > 0). Applying the framework described in section 2, we solve the optimization problem

arg min
Sk,Ak

1

2
‖y −P

K∑
k=1

ATk × Sk‖2Σ−1 +

K∑
k

log pθ(Sk) + ι>0(Ak) + ι>0(Sk), (7)

by a block-wise application of Equation 5 to every optimization variable. We base the morphology
prior pθ on the PixelCNN++ model [10], which we adjust for continuous signals by using a simple
Gaussian model for the conditional distribution pθ(xi|x0 . . . xi−1). The prior pθ is trained on an
existing set of high-resolution images of isolated galaxies [17, 18, 19] from the Hubble Space
Telescope (HST)/Advanced Camera for Surveys (ACS) COSMOS survey [20]. These single-band
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(a) Simulated blend (b) True component 1 (c) True component 2

(d) residuals (e) Recovered component 1 (f) Recovered component 2

Figure 2: Artificial blend experiment, simulated from HST observations, demonstrating the ability of the prior
to disentangle sources from their morphologies alone. The log likelihood evaluated on the trained prior for
the blended and isolated sources is reported in the top row: a blended object (a) has lower log likelihood than
isolated objects (b, c) under the prior. This allows us to separate (e) and (f) when given (a).

high-resolution images from HST are reconvolved with a uniform reference PSF and resampled to
match the pixel scale of the test survey, the Hyper Suprime-Cam (HSC) survey from the Subaru 8.2
meter telescope on Maunakea, Hawaii [21]. Figure 2b and Figure 2c show examples of two isolated
galaxies obtained by this procedure, annotated with the log likelihood log pθ(x) of the trained prior.
Figure 2a shows a simulated blend obtained by adding these two isolated galaxies. The log likelihood
under the prior for both galaxies combined is lower than for each isolated galaxy, demonstrating that
the morphology prior provides information that can be leveraged for deblending.

Equipped with the prior on single-galaxy morphology, we tackle the blended scene in Figure 1 from
the first public HSC data. The observations, made in B = 5 different filters, are modelled with
Equation 6, where the number of sources K and a first guess of their positions is provided by an
external detection algorithm. We infer the parameters of the scene by solving Equation 7, yielding a
sky model (Figure 1b) which can be separated into its individual components (Figure 1d). The model
creates an excellent fit to morphologies and SEDs despite the strong overlap of several sources. The
residuals are dominated by an undetected nuclear component in the brightest galaxy, which could be
modeled by adding another component there. Finally, our model analytically accounts for different
observing conditions. We provide in Appendix A a comparison to the state-of-the-art SCARLET
deblender [16] on this scene to highlight the benefits of the deep morphology prior. In Figure 3
we show the same blended scene, but we artificially increased the noise RMS by a factor of 3. By
adjusting the noise covariance in Equation 7, the methods recovers a very similar result without the

(a) Simulated noisy scene (b) Sky model (c) Residuals

(d) Individual components of the model

Figure 3: Same as Figure 1, but with artificially increased noise (RMS × 3).
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need to retrain the deep learning prior. We could also address e.g. additional blurring from a wider
PSF or resampling to lower resolution with the same approach.

4 Conclusion
We have presented a hybrid Bayesian framework for inverse problems that combines analytic forward
modeling for the likelihood with deep generative models for complex data-driven signal priors. This
approach makes explicit use of physically motivated problem structure and prior knowledge from
high-quality observations. When applied to the blind-source separation problem of galaxy blending,
we can retrieve multi-components models of astronomical scenes that are by construction robust to
changes in observational conditions.
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(a) Simulated noisy scene (b) SCARLET sky model (c) Residuals

(d) Individual components of the model recovered by SCARLET

(e) Individual morphology components recovered with SCARLET

(f) Individual morphology components recovered by our proposed method

Figure 4: Similar to Figure 1, but using the deblender SCARLET with default settings. We also compare in (e)
and (f) the deconvolved morphology components (Sk in Equation 6) recovered using the strict monotonicity and
symmetry constraints in SCARLET with the deep morphology priors from this work.
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A Comparison to the SCARLET deblender

In this appendix, we compare the proposed method with the baseline deblending algorithm SCARLET,
which constitutes a state-of-the-art deblender for ground-based images [16]. SCARLET uses the same
parameterization and loss function; in fact the work described here uses the same code base and only
differs in the assumptions about galaxy morphologies.

In its default configuration, SCARLET assumes every Sk to be non-negative, symmetric under rotation
of 180◦ and monotonically decreasing away from the center. These hard constraints can directly be
enforced through proximal mappings in Equation 4 and have been found successful as regularizers
of the deblending problem for ground-based images. They do not perform well on complex and
irregular galaxies, which is the original motivation for the present work: replacing analytic, heuristic
constraints by a data-driven deep morphology prior.
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Figure 4 show the result of running baseline SCARLET on the same data set. The residuals are
significantly larger than in Figure 2 due to the inadequacies of the strict symmetry and monotonicity
assumptions. This can also be seen by directly comparing the recovered deconvolved morphologies
(lower panels of Figure 4). The symmetry constraint can lead to artifacts in the direction of a nearby
source, in this example the model of source 0 is influenced by source 1. The morphologies recovered
under the deep morphology prior are by construction realistic and do not exhibit such obvious
artifacts.

While this comparison remains qualitative, it illustrates that the deep morphology prior addresses
one main limitation of the SCARLET algorithm. A thorough study of our extension for the science
cases of the upcoming LSST survey [13] will be the main focus of an upcoming science paper geared
towards the astronomical community.
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