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Abstract

Machine learning methods are ubiquitous in particle physics and have proven to be
very performant. One unique application within particle physics is the FPGA-based
trigger and data acquisition systems that require sub-microsecond latencies and
specialized hardware. Accelerating these algorithms in low-latency specialized
hardware, such as FPGAs, is also of great interest in many scientific fields. De-
velopment of machine learning algorithms on these systems has historically been
difficult due to the specific expertise required to program FPGAs. We present a
compiler based on High-Level Synthesis (HLS) called hls4ml to build machine
learning models in FPGAs The use of HLS increases accessibility across a broad
user community and allows for a drastic decrease in firmware development time.
We demonstrate the effectiveness of this tool by synthesizing fully-connected neu-
ral networks of varying sizes and bit precisions. We then explore the required
design space needed to map out the FPGA resources and latency.

1 Introduction

Machine learning (ML) methods deployed in data processing have been demonstrated to be extremely
effective in many different tasks across particle physics. One interesting use case is the first stage
of real-time data processing, called the Level-1 (L1) trigger, for experiments at the Large Hadron
Collider (LHC) at CERN. Due to the extreme frequency of 40 MHz at which proton bunches collide
at the LHC, data rates at the two multipurpose experiments, CMS [1] and ATLAS [2], are of the
order of hundreds of terabytes per second. With such high data rates, the real-time system must
filter events to reduce data rates to manageable levels for offline processing. Because of the extreme
input data rates and the size of the data buffers, the L1 trigger system typically uses custom hardware
with ASICs or FPGAs to handle the initial data rate using pipelined algorithms with latencies of
hundreds of nanoseconds. As the LHC collision intensity increases, processing of this data becomes
every more restrictive. The use of sophisticated ML algorithms in the L1 trigger would allow LHC
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experiments to preserve or even enhance potential physics signatures such as those related to the
Higgs boson, dark matter, and hidden sectors [3] that would otherwise be lost. In this study, we
explore the implementation of neural networks in FPGAs, mapping out resource usage and latency for
various deep neural network architectures and hyperparameters, and we demonstrate the feasibility
of deep learning techniques in sub-microsecond FPGA applications. We also present a compiler
based on High-Level Synthesis (HLS) called hls4ml to rapidly prototype machine learning models
in FPGAs. In this work, we focus on the LHC trigger application. However, these technologies apply
to many real-time detector systems across fundamental physics where low latency high throughput is
critical.

The results presented use hls4ml to scan the network precision and parallelization to optimize DSP
and other resources. We discuss generic techniques such as network compression, parallelization, and
reduced precision, which can be applied to design efficient neural network implementations tailored
for different applications in the physical sciences. The accessibility and ease of configurability in
HLS allow for physicists to quickly develop and optimize machine learning algorithms targeting
FPGA hardware.

2 Core concepts

As a proof of concept, we investigate for use in FPGAs is created for the task of classifying a jet as
either a quark (q), gluon (g), W boson (W ), Z boson (Z), or top quark (t) jet. Jets are collimated
showers of particles that result from the decay and hadronization of quarks q and gluons g.

At the LHC, due to the high collision energy, a particularly interesting jet signature emerges from
overlapping quark-initiated showers produced in decays of heavy standard model particles, such
as W and Z bosons and top quarks. It is the task of jet substructure [4–16] to distinguish the
various radiation profiles of these jets from backgrounds consisting mainly of quark (u, d, c, s, b) and
gluon-initiated jets.

The model is trained using a data set consisting of simulated jets with an energy of pT ≈ 1 TeV,
originating from light quarks, gluons, W and Z bosons, and top quarks produced in

√
s = 13 TeV

proton-proton collisions [17, 18]. Jets are clustered from individual reconstructed particles, using the
anti-kT algorithm [19, 20] with jet-size parameter R = 0.8. This corresponds to a simplified version
of the real-world scenario, in which jets with any pT values would be processed.

We use 16 jet substructure observables [21–24]: mmMDT, Nβ=1,2
2 , Mβ=1,2

2 , Cβ=0,1,2
1 , Cβ=1,2

2 ,
Dβ=1,2

2 , D(α,β)=(1,1),(1,2)
2 ,

∑
z log z, and multiplicity [17, 18], as inputs to a neural network clas-

sifier. The input features are standardized by removing the mean and scaling to unit variance. The
architecture is a fully-connected neural network with three hidden layers containing 64 neurons in
the first layer and 32 neurons in the second and third layers. The activation function for the hidden
layers is a rectified linear unit (ReLU) [25] while the output layer activation function is a softmax
function to provide probabilities for each of the five classes.

The performance of the neural network classifier is shown in Fig. 1. Top-quark jets, by virtue of their
large mass and three-prong nature, exhibit the best separation from the rest of the jet types. The W
and Z jets are similar in performance because of their masses and two-prong nature while quark and
gluon jets are notoriously challenging to classify [26].

3 Implementation

To adapt the network to an FPGA, we first evaluate the neural network with fixed point precision
denoted by <X,Y> where Y is the number of bits representing the signed number above the binary
point (i.e. the integer part), and X is the total number of bits. We scan the number of integer bits and
then scan the number fractional bits.With <16,6> fixed-point precision, the fixed point calculations
reproduce the receiver operating characteristic (ROC) curve expected with full floating-point precision
with a negligible loss in performance.

With hls4ml, we explore the FPGA design space of this dense network through

• compression, the three-hidden-layer model with 70% of the parameters removed using
iterative retraining with L1 regularization and magnitude-based pruning [27, 28, 17];
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Figure 1: (Left) Performance of the deep neural network classifier quantified in a receiver operating
characteristic (ROC) curve of signal efficiency versus mis-identification rate for quark, gluon, W
boson, Z boson, and top quark jet identification. The mis-identification rate is based on an equal
admixture of the other non-signal jet types. (Right) DSP usage in the compressed three-hidden-layer
model as a function of the network precision. The various curves illustrate resource usage for different
resource usage factors. The latency is given in clock cycles for a 200 MHz clock frequency.

• quantization, the precision of the inputs, weights, and biases;
• parallelization, the number of times a given multiplier is used for a layer computation;

using a multiplier once is the most parallel (and quickly) a layer can be computed and is
what we call a reuse factor of 1.

With these variables as handles to control the implementation of the network, we monitor the
following firmware implementation metrics:

• resources: DSPs, Flip-Flops (FFs), and Look Up Tables (LUTs);
• latency: the time it takes to compute the full network;
• initiation interval: the time before a new set of inputs can be accepted.

The three-layer model is synthesized for a Xilinx Kintex Ultrascale FPGA with part number
xcku115-flvb2104-2-i The clock frequency is fixed at 200 MHz, which is typical for the first
stages of LHC triggers. Resource usage estimates are taken from the Vivado HLS 2017.2 [29] synthe-
sis step and are found to be conservative when compared to implementation. While conservative,
the short time required to make HLS resource estimates makes them useful for rapidly prototyping
different network designs and deriving useful trends.

In Fig. 1 (right), we report the DSP usage as a function of precision of the fixed point calculations,
<X,6>. Different curves are shown for different values of the reuse factor. As the reuse factor
increases, the DSP usage is reduced proportionally to the reuse factor. The DSP resource usage has
steps in resource usage as a function of the network precision due to the maximum precision of the
Xilinx FPGA DSPs. In the figure, we also indicate the maximum number of DSPs available in this
particular Xilinx FPGA. The corresponding LUTs (FFs) consumption stays below the 30% of the
available capacity. The latency of the network inference stays between approximately 10 and 35
clock cycles (50 to 175 ns), with a small dependence on the fixed-point precision. It increases by 4
clocks with each increment in the reuse factor, corresponding to the four layers of neuron values that
must be computed. By design, the initiation interval and the reuse factor match as a new input can be
introduced to the algorithm only when all multiplications for a given layer are completed.

4 Recent features and expanded capability

To enhance the flexibility of hls4ml, several additions have been developed, including:

• extension of dense networks to allow for significantly larger networks in terms of the number
of neurons per layer;
• inclusion of zero-suppressed weights for weights stored in on-chip memory or block random

access memory (BRAM) reducing the use of on-chip logic registers;
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• addition of binary and ternary matrix multiplication.

For each of these additional components, the ultimate goal is to allow for full flexibility to implement
larger ML algorithms in applications where the latency restrictions are not as strict as within the L1
trigger.

When scaling to large dense networks with more than 104 multiplications, the operations need to
be restructured to effectively utilize the BRAM. In this scenario, weights are stored in the BRAM
and then systematically retrieved from the BRAM and distributed to the DSPs. To allow for a
maximally distributed set of weights, the reuse factor is utilized to ensure that only a fixed number
of multiplications is performed per clock period. This number is functionally limited to the number
of DSPs on a given FPGA. Thus, to maximize the resource efficiency, the matrix multiplication
operations should be restructured in time so that a fraction of the multiplications (as determined
by the reuse factor) are done per clock period and this fraction is immediately accumulated. This
approach minimizes bottlenecks at the accumulation step and utilizes the largest number of DSPs.
Additionally, an optimization of the HLS code structure was performed to ensure that the resource
usage is comparable with the equivalent RTL implementation. With this, dense networks having as
many as 106 weights can be inferred on a single FPGA without going off-chip to read the network
weights.

Large matrix multiplication with sparse matrices can be further optimized through the use of zero
suppression. In this scenario, weights are stored with an additional pair of indices that determine
the row and column of each weight. These indices and the weight are encoded into a single number.
Provided the weight precision, and index precision is below 32 bits, a single BRAM element can store
each weight. In this way, the usage of the on-chip memory can further be optimized. Multiplication
with sparse matrices then requires that one carry the index around until the final accumulate. As with
the large dense network implementations, to fix the number of DSPs used per clock, sparse matrix
multiplication can be resized with the reuse factor. Here, only non-zero elements are multiplied and
then the results are fanned out to an output vector of the full size of the layer.

Lastly, dedicated support has been added for networks with binary [30] or ternary [31] weights.
Weights are stored as binary or ternary numbers and the multiplication can thus be performed through
bit flip operations. This avoids the use of DSPs, enabling the implementation of larger networks, and
consequently allows for a simplified routing scheme. Due to the lower precision of the weights, this
requires significantly larger networks to perform at the same accuracy.

To understand the scaling, we consider three benchmark dense networks trained with the MNIST
database of handwritten digits in Keras. The first model consists of 784 inputs, 3 hidden layers each
with 128 hidden neurons and ReLU activation functions, and finally 10 outputs for classifying digits.
The second (third) model is a binary (ternary) neural network [30] with batch normalization [32]
applied before each binary (ternary) tanh activation function. The final model is the same as the
first but with 95% of the weights removed using L1 regularization and magnitude-based pruning [27,
28, 17]. The first model corresponds to 134× 103 multiplications, and thus, at a minimum would
require 134 clock periods of 103 DSP operations. To obtain the minimum latency when targeting
an initiation interval of 128, we reshape the matrix multiplication with a reuse factor of 112 for the
first layer and 128 for the other layers. For targeting an initiation interval of 4096, we set the reuse
factor to 4096 for all layers. The accuracy, FPGA resources, and latency for these models are shown
in Table 1. Further optimization is required to reduce the LUT usage for the 95% pruned model with
zero-suppression and an initiation interval of 128.

Table 1: A summary of the MNIST dense models’ performance on an FPGA implemented with
different reuse factors and numerical precisions. Numbers are shown as percentages of the FPGA
components, DSPs, BRAM, FFs, and LUTs, of a Xilinx Kintex Ultrascale FPGA with part number
xcku115-flvb2104-2-i at 200 MHz based on Vivado HLS 2018.2 [29]. The initiation interval in
clock periods is the same as the largest reuse factor used in the model.

Model Initiation Interval Accuracy Latency DSP BRAM FF LUT
MNIST dense model 128 0.97 2.6 µs 21% 45% 12% 33%
MNIST binary dense model 128 0.93 2.6 µs 0% 33% 7% 39%
MNIST ternary dense model 128 0.95 2.6 µs 0% 33% 7% 40%
MNIST dense model, 95% pruned with zero suppression 128 0.96 2.8 µs 1% 34% 13% 164%
MNIST dense model 4096 0.97 68.1 µs 1% 66% 27% 83%
MNIST dense model, 95% pruned with zero suppression 4096 0.96 82.1 µs 0% 34% 9% 25%
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5 Outlook

We introduce hls4ml, a deep neural network compiler based on HLS capable of porting fully-
connected networks to an FPGA trained from conventional training frameworks such as Keras and
PyTorch. We focus on the application of real-time event reconstruction and filtering at the LHC
in custom electronics with FPGAs although the methods are broadly applicable to many real-time
detector systems in the physical sciences that can benefit from machine learning methods. We consider
two specific case studies: a fully-connected neural network to identify jets and larger fully-connected
neural networks to identify handwritten digits from the MNIST data set. For the first study, we
show it is possible to implement a fully-connected three-hidden-layer network in a Xilinx Kintex
Ultrascale using roughly 10% of the available DSPs and latency of approximately 75–150 ns with a
clock frequency of 200 MHz. This fits well into the allowed hardware trigger reconstruction budget
of LHC detectors such as ATLAS and CMS. For the second study, we extend the capabilities and
flexibility of hls4ml to allow larger neural network architectures for applications with less stringent
time constraints of approximately 1–100 µs.
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