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Abstract

High energy particles originating from solar activity travel along the the Earth’s
magnetic field and interact with the atmosphere around the higher latitudes. These
interactions often manifest as aurora in the form of visible light in the Earth’s
ionosphere. These interactions also result in irregularities in the electron density,
which cause disruptions in the amplitude and phase of the radio signals from the
Global Navigation Satellite Systems (GNSS), known as ’scintillation’. In this
paper we use a multi-scale residual autoencoder (Res-AE) to show the correlation
between specific dynamic structures of the aurora and the magnitude of the GNSS
phase scintillations (σφ). Auroral images are encoded in a lower dimensional
feature space using the Res-AE, which in turn are clustered with t-SNE and UMAP.
Both methods produce similar clusters, and specific clusters demonstrate greater
correlations with observed phase scintillations. Our results suggest that specific
dynamic structures of auroras are highly correlated with GNSS phase scintillations.

1 Introduction

Space weather includes phenomena associated with high energy particles originating from the sun and
their expansion throughout the solar system. As the high energy particles interact and are captured by
the Earth’s magnetic field they are deposited in high latitudes around the two poles. Their increased
concentration creates perturbations in the Earth’s ionosphere which affect the propagation of radio
signal communications depending on the scale of perturbations and the frequency of the signals.

The global navigation satellite system (GNSS) is a constellation of satellites around the Earth used
for accurate navigation, timing and positioning. Each GNSS receiver is connected to four or more
satellites receiving radio signals used to calculate accurate location and timing coordinates of the
receiver. The frequency of these signals is in GHz and therefore, they interact with small scale
irregularities in the ionosphere. This can cause the phase and the amplitude of the radio waves to
change, resulting in degraded performance or even complete loss of lock. The changes in amplitude
and phase are known as scintillations – this paper is focused on phase scintillations (σφ), as these are
considered to be more important in the high latitudes [12].
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At high latitudes, the interaction of high energy solar wind particles with terrestrial neutral gases
in the Earth’s ionosphere leads to visually observed effects such as the Aurora Borealis/Australis.
Aurorae are highly dynamic phenomena that have long been thought to correlate with amplitude and
phase scintillations due to similar geophysical drivers causing these phenomena. Previous research
has demonstrated that the occurrence of significant phase scintillations is correlated with the presence
of the aurora [1, 12, 13], and that specific structures in the aurora may be more correlated with high
σφ values (e.g. [5, 10, 13, 6]).

Variations in the visible aurora are manifestations of variations in the geophysical drivers. Auroral
images have long been classified in a few distinct classes pointing to their geophysical driving
mechanisms. Several recent studies have applied deep learning methods to aurora image classification
[2, 14, 15]. These studies have used supervised learning approaches, which can be subjective, as they
rely on the judgement of human experts to label auroral events. Human annotation can bias labels
to identifying only the most prominent of features in the images, and also it relies on pre-defining
specific classes that may exclude some of the salient features associated with physical processes
occurring in the ionosphere. In addition to being time-consuming, labelling typically focuses on
identifying application-specific features. In this work, we investigate unsupervised approaches to
clustering aurora images using a general-purpose approach. Images of the Aurora Borealis originating
from the THEMIS network of Northern Canada [9] are passed through a Residual Autoencoder (Res-
AE) [3, 4], creating high-dimensional embeddings. The embeddings are then dimensionally-reduced
and clustered with t-SNE and UMAP [7, 8]. We investigate the correlations of clusters to both known
aurora classes and the magnitude of the phase scintillations measured at co-located GNSS receivers.

2 Proposed Method

Dataset Our dataset contains 35,277 images from THEMIS (Time History of Events and Macroscale
Interactions during Substorms) All-Sky Imager (ASI) data from the Fort Simpson (FSIM) site in
Northern Canada. The images are part of the THEMIS auroral dataset, taken ±3 hours from midnight
and represent two months of data from January and February 2015. An additional 7700 manually
annotated auroral images, classified among 6 classes (arc, diffuse, discrete, moon, clear, clouds)
depending on the auroral structure [2] from March 2015, are used to evaluate embeddings in the
low-dimensional feature space. We note that images are classified in the moon category only if the
presence of the moon makes the aurora not visible (per the discretion of the expert annotating the
images). We also use measurements from a PolarRxS GNSS receiver (Septentrio 2015, Leuven,
Belgium) at Fort Simpson from the Canadian High Arctic Ionospheric Network (CHAIN) to provide
measurements of the scintillation indices at the same time as the aurora images.

Residual Autoencoder In this work we use a Residual Autoencoder (Res-AE) as introduced in [4].
Figure 1 illustrates the encoder, and the decoder mirrors the encoder. The overall architecture has a
U-Net like structure, where sequential convolutions create multi-scale representations of the input
[11]. Each resolution level includes a residual block [3] and a convolutional layer with a stride of 2.
The resulting feature map is passed to the next resolution level. Furthermore, a series of convolutional
layers map the features from all resolution levels to an encoding of size L1 × L2 × 128, adding them
all together to create an intermediate representation L′. A final convolutional layer then maps the
intermediate representation to the encoding L of size L1 × L2 × L3. The size of the representation L
is a critical hyperparameter as it defines the expressiveness of the encoder. In our work we found
the optimal trade-off between feature space compression and expressiveness to be 32× 32× 3. The
multi-scale and residual nature of the autoencoder compresses the high-dimensional input images
into a feature representation that accounts for multi-scale features and dependencies while filtering
out some of the noise. Figure 2 shows an example of the test and reconstructed images using the
Res-AE trained on images from the FSIM Themis site.

Unsupervised clustering of embedded latent representations We investigate Barnes-Hut t-
distributed Stochastic Neighbor Embedding (t-SNE) and Uniform Manifold Approximation and
Projection (UMAP) for dimensionality reduction of the latent space [7, 8]. Both approaches pro-
vide lower dimensional representations of higher dimensional data, such that essential topological
structures of the higher dimensional space are preserved in the density of embeddings in the lower
dimensional space. In our approach, THEMIS images are mapped to the latent space L using the
trained Res-AE and then clustered with t-SNE or UMAP to embed the encoded latent representation
into two dimensions for easier visualisation and interpretation. In this case we constrain the local
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Figure 1: Res-AE Encoder

Figure 2: Original (top) and reconstructed (bottom) Themis images.

neighborhood from which UMAP learns the manifold structure of the data to 15 nearest neighbors,
as this provides a reasonable separation between the clusters.

3 Results

We train the Res-AE on 2 months of THEMIS images from FSIM to encode our image class labelled
dataset of 7700 images (we exclude images labelled as cloudy, as these do not contain physical
information on the ionosphere). Figure 3 shows the embedded latent representations for both the
t-SNE and UMAP projections, colored by the image class labels. Both t-SNE and UMAP generate
similar clusters of the labelled image classes from the latent representations. They both most clearly
cluster images identified as moon, arc, and diffuse, with subsets of the discrete images more closely
associated with each of these clusters.

We investigate the relation of the unsupervised image clusters to physically-relevant quantities related
to the ionospheric electron density, namely the phase scintillation index (σφ). Previous work has
demonstrated that the intensity in the white light ASI images is correlated with the observed auroral
precipitated energy [9], indicating ASI images provide meaningful insight into physical processes
occurring in the ionosphere, such as localised fluctuations in electron density contributing to GNSS
scintillations. Using spectral clustering, we identify distinct clusters in the projected latent space
and look at the log-normal distribution of σφ measured by GNSS receivers co-located at the same
site as the THEMIS ASI imagers. Figure 4a demonstrates this approach on the UMAP projection.
Specific clusters of auroral images (e.g. clusters 0 and 5 in Figure 4b) are correlated with significantly
higher phase scintillation indices. These clusters correspond to a subset of the aurora classified as
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(a) (b)

Figure 3: Latent space colored by image classes projected by (a) t-SNE (b) UMAP

(a) (b)

Figure 4: UMAP projection showing (a) spectral clustering (b) the corresponding log-normal dis-
tributions of σφ associated with each cluster. Colors and numbers in (b) correspond to the clusters
identified in (a) by the spectral clustering algorithm applied to the UMAP projection.

discrete and arc of Figure 3b. These clusters suggest that the brightness of auroral features (and thus
the magnitude of the auroral precipitated energy) may be correlated with the magnitude of the σφ.
This analysis demonstrates that clustering in the low dimensional projection of the latent space can
provide physically meaningful correlations with relevant physical parameters, such as σφ.

4 Discussion and Outlook

While previous work has demonstrated that supervised deep learning approaches provide a useful
method for analysing THEMIS images, here we demonstrate that unsupervised clustering techniques
using a general-purpose Autoencoder may be a useful alternative approach. These results indicate that
non-linear dimensionality-reduction techniques such as UMAP and t-SNE can provide meaningful
lower-dimensional projections of the latent representation of aurora images that correlate with clusters
associated with both human annotated image classes and physically meaningful parameters related to
the ionospheric electron density variations. These results also indicate that specific dynamic structures
in the aurora (as observed by the ASI) are more likely to correlate with GNSS phase scintillations.
Such an approach seems to be site specific however, as we observed greater separation between
images measured at different sites versus separation between image classes at a single site; additional
masking of image edges may extend the applicability of the method to multiple sites. Future work
will focus on applying this method to a larger image data set, further exploration of unsupervised
auroral feature extraction from the t-SNE and UMAP projections correlated with high σφ values, and
investigation of the correlation of clusters with other ionosopheric parameters, such as the differential
total electron content.
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