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Abstract

We estimate generalized Rényi entropies Sn of an autoregressive neural network
representation of a quantum state. A naïve “direct sampling” approach performs
well for small Rényi order n but fails for larger orders when benchmarked on a
1D Heisenberg model. We therefore propose an improved “conditional sampling”
method exploiting the autoregressive structure of the network ansatz, which outper-
forms direct sampling in both 1D and 2D Heisenberg models. The high order Rényi
entropies calculated with conditional sampling allow for extraction of the largest
eigenvalue of the reduced density matrix, and thus the single copy entanglement.

1 Introduction

Quantum entanglement is a fundamental property underpinning a diverse range of phenomena in
condensed matter and gravitational systems. Entanglement entropy quantifies the entanglement across
a cut in these systems, and reveals emergent behavior such as topological order [1; 2; 3] and quantum
phase transitions [4; 5; 6]. The Rényi entropies

Sn(ρA) =
1

1− n
ln Tr [ρnA] , n > 0, (1)

are a generalization of the well-known von Neumann entropy. Here, ρA is the reduced density matrix
for a bipartition of a pure state |ψ〉 ∈ HA ⊗ HB into subsystems A and B. The full set of Rényi
entropies encode the entanglement spectrum [7; 8], whose low-lying eigenvalues dominate at high
order n and may serve as order parameters [9; 10], or yield directly the single copy entanglement
S∞ [11].

Numerical methods have been developed to estimate entanglement entropy for quantum many-
body systems because exact calculations are usually not feasible in the exponentially large Hilbert
space. Such methods are often based on variational ansätze that represent quantum states with only
polynomial number of parameters in the system size. Tensor networks work well for 1D systems and
provide direct access to the entanglement spectrum [12; 13], but suffer from the #P-hard problem
of exact tensor contraction in higher dimensions [14]. By contrast, Quantum Monte Carlo (QMC)
techniques measure physical observables comparatively better in high dimensions, but entanglement
entropy is only accessible for integer Rényi order n ≥ 2 via the replica trick [15].

Neural networks have recently been introduced as state ansätze in variational QMC and have suc-
cessfully been trained to represent many-body ground states and to reconstruct quantum states from
experimental data, both in 1D and higher dimensions [16; 17; 18; 19]. However, numerical study
of entanglement entropy for neural network quantum states (NQS) has received limited attention,
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Figure 1: (a) The autoregressive network N representing the probability distribution p(s) is bi-
partitioned into subsystems A (orange) and B (blue). (b) The reverse net NR representing the same
probability distribution p(s) is trained with a flipped conditional ordering. (c) Schematic illustration
of conditional sampling sequence.

and only the Rényi entropy S2 has been computed for restricted Boltzmann machine (RBM) archi-
tectures [20]. To take advantage of state-of-the-art progress in machine learning, deeper and more
complicated neural network architectures have been introduced as ansätze, but their potential for
efficient entropy estimation has not yet been explored.

Here, we estimate generalized Rényi entropies Sn for an autoregressive neural network representation
of a quantum state using both “direct sampling” and an improved “conditional sampling” method that
exploits the autoregressive structure of the network ansatz. Benchmarking with 1D and 2D Heisenberg
models shows that the conditional sampling outperforms direct sampling for large Rényi order n.
The significant variance reduction from conditional sampling allows access to Rényi entropies for
n > 30 as well as the largest eigenvalue of the reduced density matrix ρA.

2 Methods

2.1 Neural Autoregressive Quantum States

The wavefunction of a N -spin quantum state in the computational basis s = {s1, ..., sN}, si =

±1 can be decomposed as ψ(s) =
√
p(s)eiφ(s), where p(s) gives the probability for each spin

configuration s and φ(s) describes the corresponding phase factor. Inspired by the work of Sharir
et al. [21] and Wu et al. [22], we choose an autoregressive network N to model p(s), and train a
separate fully-connected network for the phase; together, these comprise our neural autoregressive
quantum state (NAQS). To represent a many-body ground state, the network parameters can be trained
by minimization of the energy [16; 21] if the Hamiltonian is sparse in the computational basis.

Autoregressive networks were first introduced in the machine learning community as generative
models which express a high-dimensional joint probability distribution as a product of conditional
probabilities p(s1, ..., sN ) =

∏N
i=1 p(si|si−1, ..., s1) [23; 24]. Similarly, our probability network

N takes a spin configuration s as input and outputs the logarithm of N conditional probabilities
(Fig. 1(a)), which are summed to obtain ln[p(s)]. Having these conditionals allows efficient generation
of i.i.d. samples s̄ = (s̄1, ..., s̄N ) from the state distribution by sequentially drawing s̄1 ∼ p(s1), s̄2 ∼
p(s2|s̄1), ..., s̄N ∼ p(sN |s̄N−1, ..., s̄1). Compared with Metropolis sampling with Markov chain
Monte Carlo required for e.g. RBMs [16], sampling from N is both faster and guaranteed to be i.i.d..

2.2 Direct Sampling

Once the network is trained to represent the desired target state ψ, samples from p(s) can be used
to estimate the Rényi entropies for integer n ≥ 2 with the replica trick [6; 15]. More explicitly, the
quantity Tr [ρnA] can be computed as

Tr [ρnA] =
∑
{sia,sib}

n∏
i=1

ψ(sia, s
i
b)

n∏
i=1

ψ∗(si+1
a , sib) ≡

∑
sa,sb

Ω(sa, sb), (2)

where we have defined Ω(sa, sb) ≡
∏n
i=1 ψ(sia, s

i
b)
∏n
i=1 ψ

∗(si+1
a , sib), sn+1

a ≡ s1a, and sa(b) ≡
{sia(b), i = 1, ..., n} with each sia(b) representing a sum over all basis vectors inHA(B).
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Figure 2: (a) Rényi entropies S2 (top) and S18 (bottom) for the ground state of the 1D AFM
Heisenberg model with 100 spins and open boundary conditions. For small Rényi order n = 2, direct
sampling (orange crosses) and conditional sampling (blue dots) both match the DMRG results (gray
dots; gray dashed line is a guide to the eye). For larger Rényi order n = 18, direct sampling becomes
comparatively noisier at the odd bonds. (b) ln Tr [ρnA] for representative even bond index 50 and
odd bond index 51 for integer Rényi orders 2 ≤ n ≤ 32. The conditional sampling consistently
gives close results to DMRG while direct sampling gets worse for larger n at odd bonds. (c) Largest
eigenvalue λmax and its degeneracy g extracted from fitting the entropy data; both agree well with the
exact values. Number of samples for all plots (a-c) are about 50,000 for conditional sampling and
100,000 for direct sampling.

Using a straightfoward direct sampling (DS) scheme, Eq. 2 can be estimated in QMC as Tr [ρnA] =
〈fDS〉 ≡ 〈Ω/PDS〉(sa,sb)∼PDS

, with

PDS(sa, sb) =

n∏
i=1

p(sia, s
i
b). (3)

For each Monte Carlo step, n samples {(s̄ia, s̄ib), i = 1, ..., n} are drawn independently from the state
distribution p(sa, sb), then permuted as {(s̄i+1

a , s̄ib), i = 1, ..., n} to evaluate the estimator fDS. Our
benchmarking shows that fDS usually has a large variance that worsens with higher Rényi order n.
A “ratio trick” may be applied to control the variance of the entropy estimator [15], but it requires
the valence bond basis to make sure all relevant weights are positive which is not true for the NAQS
ansatz.

2.3 Conditional Sampling

To solve this variance problem and access higher order Rényi entropies, we propose an improved
conditional sampling (CS) method, which generates a batch of correlated rather than independent
samples. Now, the sum in Eq. 2 is estimated as Tr [ρnA] = 〈fCS〉 ≡ 〈Ω/PCS〉(sa,sb)∼PCS

, with

PCS(sa, sb) = p(s1a)p(s1b |s1a)p(s2a|s1b)p(s2b |s2a) · · · p(snb |sna). (4)

Iteratively, after drawing s̄ia, we sample s̄ib ∼ p(sb|s̄ia) followed by s̄i+1
a ∼ p(sa|s̄ib), which generates

the sample sequence s̄1a → s̄1b → s̄2a → s̄2b → · · · → s̄na → s̄nb (Fig. 1(c)). Assuming the
predetermined sampling order of the probability network N is sa → sb, then sampling in the other
direction sb → sa requires a “reverse network” NR which models the same probability distribution
p(s) as N , but outputs conditionals in the reverse order (Fig. 1(b)). An analytic derivation of
the parameters for NR is difficult, so we instead train it as a separate autoregressive network by
minimizing its KL divergence with N .

3 Results and Discussion

3.1 1D Heisenberg Model

We first benchmark the sampling methods on a network trained to find the ground state of a 1D
antiferromagnetic (AFM) Heisenberg modelH =

∑ ~Si · ~Si+1 forN = 100 spins with open boundary
conditions. After training the NAQS representation by minimizing 〈H〉, we draw independent samples
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Figure 3: (a) Schematic for spiral mapping from 2D grid to 1D string. (b) Rényi entropy S2 for the
ground state of the 2D AFM Heisenberg model on a 4 x 4 grid with periodic boundary conditions.
DS (orange crosses) and CS (blue dots) data both match exact values (black); the error comes mainly
from the infidelity of the NAQS ansatz. (c) ln Tr [ρnA] at bond index 10 for integer Rényi orders
2 ≤ n ≤ 32. The DS data (orange crosses) is about an order of magnitude worse than the CS data
(blue dots) at large n. (d) The maximum eigenvalue λmax and degeneracy g are extracted from a
linear fit to the CS data for ln Tr[ρnA], with g restricted to an integer value. Number of samples for DS
and CS data in (b-d) is 150,000.

{(sia, sib), i = 1, ..., n} from PDS to estimate Tr [ρnA] using direct sampling. As shown in Figure 2(a),
the direct sampling method (orange crosses) yields accurate results for n = 2 compared with an exact
DMRG computation (gray dots with dashed line) [25]. However, for n = 18 the entropy estimate
across “odd bonds”, which partition the system such that A and B have an odd number of spins, starts
to show larger variance. Figure 2(b) shows that the agreement between direct sampling and DMRG is
consistently close at even bonds but worsens by an order of magnitude at odd bonds for large n.

We then use conditional sampling to estimate the entropy, which indeed removes the larger variance at
higher n. As shown in Figure 2(b), we find good agreement with DMRG up to n = 32, and the error
mainly comes from the infidelity of the NAQS state itself. We should emphasize that the success of
conditional sampling is closely related to the existence of large classical mutual information between
regions A and B, which is indeed true for the singlet ground state of the AFM Heisenberg model.

In the limit as Rényi order n → ∞, the main contribution to the entropy comes from the largest
eigenvalue λmax of ρA, which yields the single copy entanglement S∞ = − lnλmax [11]. From a
linear fit to the CS data for ln Tr [ρnA] in the range 10 ≤ n ≤ 32, we extract λmax from the slope
and its degeneracy g ∈ N from the intercept (Fig. 2(b)). The results are plotted in Figure 2(c);
the differences between the extracted λmax and DMRG results are within 0.005. Due to the SU(2)
symmetry of the singlet ground state, the largest eigenvalue λmax of ρA has degeneracy g = 2 or 1 at
the odd or even bonds respectively. The marker colors in Figure 2(c) indicate the fitted degeneracies,
which also match the exact values.

3.2 2D Results

Finally, we benchmark entropy calculations for the ground state of the 2D Heisenberg model H =∑
〈i,j〉

~Si · ~Sj on a 4×4 square lattice with periodic boundary conditions. Although the NAQS ansatz
has an intrinsic 1D ordering corresponding to the decomposition of the joint probability distribution
into conditionals, it can still efficiently represent quantum states in higher dimensions [22; 21], which
by contrast would require infeasibly large bond dimension for 1D tensor network states. In order
to estimate Sn for square regions of increasing area using conditional sampling, we choose a spiral
ordering for the 2D grid (Fig. 3(a)). Figure 3(b) shows that the second Rényi entropy S2 for both
DS and CS agrees well with exact diagonalization [26], with systematic error caused by the NAQS
infidelity. As in the 1D system, ln Tr [ρnA] converges up to n = 32 for CS but not for DS (Fig. 3(c)).
The clean CS data allows the maximum eigenvalue of ρA and its degeneracy to be extracted from a
linear fit (Fig. 3(d)).

4 Conclusion and Outlook

We have demonstrated a numerical calculation of Rényi entropies using NAQS up to n = 32 as well
as extraction of the largest eigenvalue of the reduced density matrix. Currently, we are testing our
methods for larger system sizes to understand their scaling in 2D. In future work, better data quality
will allow reconstruction of more eigenvalues, and thus the Schmidt gap [10]. Improvements to the

4



NAQS ansatz incorporating e.g. symmetries or different network architectures would be advantageous
for training larger system sizes. More generally, it may prove fruitful to design importance sampling
methods suitable for a given neural network structure, or to tailor network architectures to a particular
sampling scheme for variance reduction.
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