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Abstract

While comprehensive Earth System Models (ESMs) are the best tools available to
understand climate system details, including its variability and ability to predict
changes in the system, the immense computational burden associated with them
opens up the possibility that reduced-order dynamical representations of such ESMs
will enable and facilitate their use in a broad range of applications. By building on
recent developments in deep neural networks, this work employs a hierarchy of
such networks, ranging from multilayer perceptron to convolutional long short-term
memory networks, to develop reduced-order dynamical descriptions of the spatio-
temporal variability of temperature in a particular setting of a popular ESM. Upon
evaluating such reduced descriptions from the point of view of predictive skill and
predictability of climate more generally, it is evident that the more sophisticated of
these network architectures is able to perform skillfully at lead times of up to about
a year. Furthermore, this approach succeeds in capturing features of climate that
have a basis in climate dynamics and can control predictability, further validating
the reduced-order dynamical description. Related issues and further perspectives
are also considered.

1 Introduction

Earth System Models (ESMs) that comprise atmosphere-ocean general circulation models coupled to
other earth system components, such as ice sheets, land surface, terrestrial biosphere, and glaciers,
are central to developing our understanding of climate [e.g., Chapter 9 in 1]. However, the immense
computational infrastructure required and cost incurred in running such ESMs precludes their direct
use in various applications to further develop our understanding of climate. Therefore, if validated
reduced-order dynamical descriptions of ESMs can be developed, they would be useful, as stand-ins
for ESMs in such applications [e.g., see 2, 3, 4]. However, in developing these types of reduced-order
dynamical descriptions, one must deal with the issue of predictability of a complex dynamical system,
in this case, the climate system.

Predictability of the climate system arises (a) from natural climate variability, i.e., variability internal
to the climate system under conditions of constant external forcing, and (b) from the climate system’s
response to varying external forcing. Following [5], they are termed as predictabilities of the first and
second kind, respectively.
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A prediction of the first kind involves being able to accurately track the future evolution of the climate
system after estimating its current state. Therefore, the skill of such a prediction is limited, on one
hand, by errors and uncertainties in the model used to approximate the climate system’s evolution
and, on the other hand, by how errors and uncertainties in the initial condition evolve. Likewise, the
skill in a prediction of the second kind is affected not only by model error but also by errors and
uncertainties in specifying external forcing.

In the framework of comprehensive ESM, there are many reasons why making predictions of the first
kind can be more difficult than modeling the climate system’s response to secular changes in external
forcing, such as due to greenhouse gases (e.g., refer to [6, 7]). These can include the scientific
challenges involved in estimating the state of the climate system with sufficient accuracy, as well as
the complex, multiscale, and chaotic dynamical nature of the climate system that complicates the
process of accounting for uncertainty in the future evolution of errors in the initial state estimate. As
such, our ability to produce longer-term projections that are controlled by external-forcing-related
predictability is better developed than our ability to produce near-term (interannual) predictions
controlled by natural-variability-related predictability. However, it also should be noted that the
climate system’s response to external forcing can be modulated by natural variability, leading to the
response to external forcing being amplified or mitigated on certain timescales of natural variability.

Remaining in the ESM framework, while initialized predictions of climate seek to augment the
external-forcing-related predictability realized in uninitialized long-term projections via predictability
related to natural variability, there are a number of issues that remain to be resolved before such
initialized predictions are skillful. For example, in many ESMs, observation-based initialization in the
presence of model bias leads to a rather rapid departure of the initialized prediction trajectory from
observations, necessitating post-processing of the predictions before they can show any skill at all.
For these reasons, we concern ourselves with a deep learning approach to the more difficult problem
of predicting the natural variability of climate as represented in an ESM in the present article.

2 Data and Method

Figure 1: Details of PCA used in PCA-LSTM.
Variance fraction captured by individual modes
and the cumulative variance captured are shown
in the main panel. The top 20 modes are retained
in this study and explain in excess of 70% of the
variance. The inset shows time variations of the
normalized principal components over a 20-year
period.

Because the climate system is driven by solar
radiation and one of the main fields of interest
is the resulting temperature distribution on
the Earth’s surface, we seek to model the
spatio-temporal distribution of surface air
temperature. Further, given the shortness
of the observed climate record, we focus on
modeling the surface air temperature evolution
in an ESM experiment—the pre-industrial
control experiment (external forcing is held
fixed) of a popular ESM, the Community
Earth System Model (CESM2). This data are
publicly available from the Coupled Model
Intercomparison Project (CMIP) archive
(https://esgfnode.llnl.gov/projects/cmip6), it
mirrors and spans a period of 1200 years,
and monthly averaged fields are used. As
the seasonal cycle is highly predictable, we
remove the climatological seasonal cycle and
seek to model deviations from the seasonal
cycle—variability caused by various nonlinear
processes and feedbacks internal to the climate
system because the external forcing is held fixed
from year to year. The data dimension is 14389× 192× 288 and about 4.5 GB.

To model this time-evolving data, we consider a range of deep neural networks, ranging from the
multilayer perceptrons (MLP) to a variety of long short-term memory (LSTM) networks [8]. As for
LSTMs, we consider ones that do not account for spatial correlations, as well as others that account
for them using principal components (PCA+LSTM) and through convolutions (convLSTM) [9].
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Figure 2: Non-dimensional root mean square (RMS) error comparison. We compare convolutional
LSTM (convLSTM) to baseline algorithms: Multilayer perceptron (MLP), PCA+LSTM, and LSTM.

3 Results and Discussion

Setup. In a preliminary set of experiments, we considered the MLP, the PCA+LSTM, and the
LSTM networks without explicit modeling spatial structure. Then, we compared them with an explicit
spatial model, convLSTM. The MLP used in this experiment had two layers. The first layer featured
512 hidden states, and the second layer had 256 hidden states. The LSTM had three 3000-node layers.
In PCA+LSTM, we first performed principal component analysis and applied the LSTM with two
256-node layers on the first 20 principal components (Fig. 1). Finally, the convLSTM network used
in this experiment had two layers with a kernel size 5× 5 and circular padding. Each layer included
eight hidden states. In this set of experiments, the dataset was split three ways as train, validation,
and test in a 60:20:20 ratio.

Model complexity vs. prediction skill. From MLP to convLSTM, the increased model complexity
led to both increasing training data requirements and longer training times. However, the network’s
increasing complexity proved fruitful in leading to improved predictive skill (shown in Fig. 2).

We recall that the climatological season cycle has been removed given the fact that such cycles are
easily predicted. Because PCA+LSTM and LSTM capture complex temporal behavior better, they
perform slightly better than MLP. The slightly worse performance of PCA-LSTM when compared to
LSTM is likely attributable to the fact that the top 20 components considered explain only about 70%
of the variability. Nonlinear encoding of spatial relationships in conv-LSTM probably explains its
better performance. In this case, predictions are skillful at lead times up to about a year. This result
highlights the importance of simultaneous modeling of spatial and temporal features in achieving
improved predictive skill. Needless to mention, the improved skill of convLSTM comes at the cost of
a significantly higher level of model complexity: it required the full 32 GB of GPU memory of an
NVIDIA V100 GPU card. For this experiment, we used the NVIDIA DGX-2.

Prediction error map analysis. Fig. 3 depicts a prediction error pattern map. Errors are shown
at a lead time of one month, but longer lead times show similar qualitative behavior. A couple of
standout features include: (a) errors tend to be meridionally structured with greater errors at mid
and high latitudes, and lower errors at equatorial and tropical latitudesand, (b) in a given latitude
band, errors tend to be higher over land than over oceans, and errors over land tend to increase with
additional distance from oceans. This is true of the Arctic and Antarctic as well.

Discussion. The climate system, either the natural system or its modeled counterpart, is a complex
dynamical system that exhibits variability on a diverse range of spatial and temporal scales. Setting
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Figure 3: A map of prediction error. The map shows non-dimensional root mean square (RMS) error
at a lead time of one month.

aside the seasonal cycle and holding the forcing constant from year to year, most such variability
tends to be chaotic. While reduced-order dynamical models of comprehensive ESMs have potential
use in varied applications, their development must encompass managing predictability given chaotic
variability. We have performed the first experiments on learning climate variability as it occurs in
a popular ESM using deep neural networks and find that some of these methods can predict the
spatio-temporal variability of surface temperatures up to lead times of about a year. Currently, we are
pursuing other architectures1 and formulations of the problem. For example, we have formulated
the prediction problem solely in terms of surface temperature because that climate is mainly a heat
transport problem (more correctly, transport of moist static energy in the atmosphere and heat in
the ocean and other subsystems). However, it is also the case that the transport is achieved by fluid
motions (that are turbulent), and we know a priori that surface temperature is affected by numerous
other processes. Therefore, it remains to be seen if a formulation that involves other variables (such
as velocity and others) can be more skillful. We anticipate that additional investigations along these
lines will serve to establish the kinds of methods studied in this work not only as useful reduced-order
models of ESMs but also as robust methods for assessing climate predictability.
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1For example, LSTNet [10], which also uses convolutional layers but captures both spatial and temporal
variations. LSTNet further adopts recurrent and recurrent skip layers that use Gated Recurrent Units for short-
and longer-term temporal relationships.
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