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Abstract

Using deep neural networks for identifying physics objects at the Large Hadron
Collider (LHC) has become a powerful alternative approach in recent years. After
successful training of deep neural networks, examining the trained networks not
only helps us understand the behaviour of neural networks, but also helps improve
the performance of deep learning models through proper interpretation. We take
jet tagging problem at the LHC as an example, using recursive neural networks as
a starting point, aim at a thorough understanding of the behaviour of the physics-
oriented DNNs and the information encoded in the embedding space. We make a
comparative study on a series of different jet tagging tasks dominated by different
underlying physics. Interesting observations on the latent space are obtained.

1 Introduction

Applying deep neural networks in jet tagging has been gaining a lot of progress during latest years.
The community has reached the common sense that 1), DNNs taking in low-level features are able
to perform well in jet tagging tasks and automatically carry out feature engineering. 2), different
architectures have been explored (including image-based CNNs [9, 13] , momentum-vector-based
RNNs [15], physics-inspired Recursive NNs [21], graph models [17, 22] and point clouds [24], etc.).
These architectures perform equivalently well in regard of tagging efficiency, and the results support
for each other [3]. Despite the fact that this is an encouraging message, it also reminds us that
there might be information redundancy in architecture search. It will be interesting if we can extract
the common part among different architecture models to reduce information redundancy and also
combine uniquely learnt information from different models to enhance tagging performance. 3),
After the establishment of well-performing jet tagging DNNs, the next step would be pushing this
further by interacting with our physics theoretical framework.

Previous attempts to visualize and interpret DNNs ([13, 18]) have been focusing on general DNNs
activation and filter visualization. This gives us some intuitive sense about what information has been
learnt. However, DNNs interpreted in this way is not sufficient for robust physics analysis. It has
been obscure regarding finding a clear path between DNNs and physics-theory observable system.

In this work, we are trying to construct the connection with a series of studies varying from latent
space probing to tailored saliency study. We use different jet tagging tasks to form a comparative
study, including W/QCD, Top/QCD, quark/gluon classifications. In these classification tasks, different
factors dominate since the causal factor resides in different part of the jet clustering trees. We know
that the very essence of object identification in High Energy Physics is to "see" underlying quantum
properties which evolves into low energy as observed patterns in the detector space. And our ultimate
hope is in the same vein, i.e. to probe into the underlying physics structure, but not only detecting
objects. As for DNN architectures, we take advantage of the tree structured Recursive Neural
Networks (RecNNs) [21] that utilize the well-established jet clustering algorithms, which encoded the

Second Workshop on Machine Learning and the Physical Sciences (NeurIPS 2019), Vancouver, Canada.



Jet Observables R2(W/QCD) R2(Top/QCD) R2(q/g)

multiplicity (λ00) 0.68 0.55 0.75
width (λ11) 0.74 0.82 0.55
Mj (λ12) 0.77 0.80 0.55
pDT (λ20) 0.30 0.36 0.65
τ1 0.67 0.78 0.54
τ2 0.67 0.62 0.56
τ3 0.67 0.53 0.61
τ2/1 0.39 0.35 0.20
τ3/2 0.16 0.39 0.09

Table 1: R2 scores in linear regression for the latent jet representation, displayed for different
classification tasks (W/QCD, Top/QCD, quark/gluon). Three observables with highest R2 scores are
highlighted for each classification task.

radiation patterns within the clustering history. A jet representation is obtained through embedding
each clustering node recursively along the clustering tree, and can then be easily fed into downstream
tasks. This approach produces interesting interpretation of encoded information within neural nets
and also provides physics-friendly method for bridging physics theory and DNN-interpretation.

Although all the interpretation studies here are carried with the architecture of tree-based RecNNs and
interpreted in the scope of supervised classification problems, the proposed methods and findings can
be adaptively applied to other architectures and unsupervised learning cases. As the last step within
the interpretation loop, how to utilize the information gained by analyzing latent space, relevance and
sensitivities to improve DNN performance and clarify other relevant aspects such as uncertainties
and robustness, would be worth further exploring.

We use similar training datasets and neural network architecture along with parameters as in
[8, 21] throughout this work. For all the tasks, we constrain jet transverse momentum to
be around 600 GeV for a more meaningful comparison across tasks. We feed input features
(pi, ηi, φi, Ei, Ei/EJ , pTi, θi = 2 arctan(exp (−ηi))) for every jet constituent, into the jet clus-
tering history to recursively build up the jet embedding. A more detailed description on the datasets
and neural network architecture can be found in Appendix A.

2 Probing Jet Embedding Space

Here we employ the “probing method” [2] to discover what has been presented in the latent space. By
feeding the learnt latent embedding representations into auxiliary probing tasks, one will be able to, in
a most straight-forward way, find the relevance between latent space and our target information, and
thus get a hint on how well the latent space is aligned with the space of specific physics observables.

After being trained on the input space of particle four momentum {(E,Px, Py, Pz)i} (or other
variants such as (pT , η, φ,m)i of the input vector) in classification tasks, the embedding vectors
of jets {hJ} are then taken to be investigated in a task-independent way using linear classification
or regression to link with our physics observable space {Oi}. To be more specific, we take the
Generalized Angularites λκβ [20] as a systematic summary of common jet observables, as expressed
in Eqn. 1, with zi being the transverse momentum fraction of i-th jet component and θ = Ri

R , where
Ri is the azimuthal distance to the jet axis and R is the jet radius.

λκβ =
∑
i∈Jet

zκi θ
β
i (1)

We will then have in the (κ, β) space, for instance, jet mass as (1,2). We report, in Table 1, the
returned R2 score of the linear regression for jet angularities and jet N-subjettiness [27] (τN ) which is
very useful in probing “prongness” substructure of jets. R2 score is defined as the ratio of explained
variance and total variance, with R2 = 1 corresponding to perfect fitting.
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From Table 1, one can see that among three classification tasks, W/QCD and Top/QCD both give
high probing score on jet width (λ11) [16] and jet mass Mj (λ12), while quark/gluon gives high score
on jet multiplicity (λ00) and pDT (λ20) [7]. This is interesting, because in (κ, β) space, (1,1) and
(1,2) are both IRC safe observables, while the other two IRC unsafe angularities give important
information in quark/gluon discrimination [20]. Given the previous study results on λκβ quark/gluon
discrimination using mutual information in [20], it’s foreseeable that further study on the full
angularity space or using more sophisticated probing methods perhaps will lead to very interesting
observations. Another interesting point is that the ratios of N-subjettiness (τ2/1, τ3/2), which play
very important role in traditional prongness jet substructure tagging including both W tagging and
Top tagging, are not strongly manifested in the embedding representation. Rather, the N-subjettiness
(τ1, τ2, τ3) themselves are much more directly related with the latent representation, indicating a
more fundamental role in the latent space under investigation. Beside the characteristic jet observables
studied above, the authors in [11, 19] attempted to find the best discriminative observables, constructed
from the N-subjettiness basis, for jet tagging problems with a machine learning approach. It will thus
also be very interesting to see how these new observables are related to the latent embeddings.

Beside embedded jet representation, we would like to see how the representation changes along the
clustering trees. This is intrinsically difficult since every jet has different clustering history. As a naive
attempt, we calculated the mass direction and want to see how the mass direction shift when passing
it down the clustering tree. We observed that sometimes when the mass direction changes drastically
(i.e. the mass direction calculated with jet embeddings doesn’t fit with downwards clustering nodes),
that’s close to where the hard splitting (resonance decay) happens. However, a more systematic
investigation will be necessary to lead to a confident conclusion.

Embedding Transferability As we have seen that some general physics observables (or relevant
information) can be induced in the latent space by classification tasks, we expect the latent representa-
tion learnt by a specific classification task is informative enough to apply to other physics processes,
where some common features may be transferable. We try to pass the jet embeddings learnt by one
classification task to another classification problem, to see how general or transferable the learnt jet
representations are. Results show that for similar tasks (W/QCD and Top/QCD), the embeddings
transfer very good performance, while the transferability decreases a bit for different types of tasks
(such as across W/QCD and quark/gluon). More details can be found in Appendix B.

Other Network Architectures We have shown linear probing for RecNNs. In Appendix C, we
also present linear probing results (only in Top/QCD classification) for other important architectures
such as FCN, LSTM and CNN, with only low-level features as input. For some of these models,
there is no clear Embedding Layer, so we investigated all the 3 latest layers. R2 scores from these
architectures are not as impressive as in RecNN, but still some common trends can be observed. For
all these architectures, jet width, jet mass and τ1 (τ2) always dominate. Due to the image-based
nature of CNN, the hidden representation is always in the pixel space. This makes it difficult to
directly link with physics observables. So in the third latest layer Hidden(-3) (the flatten layer), R2s
are always close to 0. In later dense layers, R2 increases a bit, indicating some abstract features are
learnt here. Comparatively, RecNN obviously surpass other models in learning physics observables
in latent embeddings. While these analyses are only using a very simple linear regression, we expect
that more complex analysis will also bring interesting observations.

3 Interpreting on Jet Lund Plane

Gradient-based saliency maps [25] give us a general sense on how input space affects activation in
neural networks. However, this method is not straight-forward in revealing underlying physics. For
jet physics, the most important building block is jet splitting mechanism, which tells us the underlying
dominating interactions. Taking advantage of the base clustering structures within RecNNs, we
can peek into every splitting easily, even within a neural network setup. In order to explore the jet
splitting mechanisms and corresponding neural network activations, we map the saliency onto Jet
Lund Planes, giving a meaningful, in a physics sense, visualization.

Lund diagrams [10, 14] build theoretically useful framework for jet splitting by expressing emissions
on the lund plane (∆, kt), where ∆ denotes angular distance between two splitting branches and
kt denotes the relative transverse momentum of the softer branch (the emission). It gives a handy
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description on soft and collinear emissions within jets. And it separately display different kinematic
regions with clear underlying physics. Soft-collinear emissions are emitted uniformly on lund plane
and the region where hard splitting happens can always be easily spot. This gives us a navigation
map to identify the physics nature of most sensitive nodes within neural networks.

Method We display gradient-based saliency maps for different jet classification tasks comparatively.
The saliency for Recursive Neural Networks [21, 1] is defined, in Eqn. 2, as the l2 norm of relative
gradient sensitivity passed from the classifier output L of every clustering embedding node hi
normalized with respect to l2 norm of the gradient sensitivity of final jet embedding node ∂L

∂hJ .∥∥∥∥∥ ∂̂L∂hi
∥∥∥∥∥
2

=

∥∥∥ ∂L∂hi

∥∥∥
2∥∥ ∂L

∂hJ

∥∥
2

(2)

Saliency maps can be examined with in the tree-structure itself, however, only in an individual-based
way, again since every jet has its own clustering history. In order to have a collective impression
on the sensitivity distribution for all the clustering nodes without losing track of underlying physics
manifestation, we map the saliency on to jet lund plane to compare across tasks and across different
kinematic regions dominated by different splitting mechanisms.

Figure 1: Saliency sensitivity mapped onto Jet Lund Plane. Left: QCD and W jets in W/QCD
Classification; Middle: QCD and Top jets in Top/QCD Classification; Right: Quark and Gluon jets
in Quark/Gluon Classification.

Results We present the averaged saliency sensitivity in Fig. 1. For W/QCD, Top/QCD and
quark/gluon classification, we show the saliency map on Lund Plane for both classes. This facilitates
two purposes: class saliency within tasks and same-class saliency comparison across tasks. To make
the illustration clearer, we restrict the saliency intensity (overflows are mapped onto upper bound) to
be within [0, 2] for W/QCD and [0, 1.5] for the other two classifications. More plots for uniform
range, which make easier comparison, are included in Appendix D.

From Fig. 1, one can observe that:

• For the three different tasks, the sensitivity maps on the lund plane give very different
characteristic patterns. For W/QCD, the sensitivity is generally higher than other two tasks.
• From the left column for W/QCD classification, there are more activities along the diagonal

boundary. This is where hard-collinear splitting happens. Notice that even for QCD jets,
there is a high-sensitivity spot close to location (2, 3.5), which corresponds to hard splitting
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at a mass between 50 GeV (which is the mass peak of QCD jet samples) and 80 GeV
(W boson mass). This might be related to the two-prongness (hard splitting), where the
characteristics of W jets shapes the sensitivity activities within the comparing QCD jets. It’s
not clear if some high activity in collinear region is related to IRC safety robustness of the
network. (IRC safety study in [21] showed that for “collinear10-max” (applies collinear
splits to the 10 highest pT jet constituents), background rejection decreases a bit.)

• From W/QCD to Top/QCD , the relative sensitive regions of QCD jets change drastically.
The left boundary corresponds to the final clustering step which in C/A will have large
angles. In Top/QCD classification, sensitivity activity slightly decreases along the log(1/∆)
axis. (the red spot of lower-left corner in QCD jets is curious though.) Compared to W/QCD,
the hard-collinear region is much less sensitive. This may be partly because top jets with
heavier mass have generally more decay constituents and correspondingly longer cascading
chain and more complex jet substructure, where saliency passing down longer chains ending
in collinear splittings tends to decrease or vanish. The top mass hard-splitting regions in
the upper part of the triangle is less obvious compared to W/QCD case, but still relatively
important in Top jets.

• Finally for quark/gluon classification, it seems that large-angle and some hard-collinear
splittings (especially for gluon jets) are relatively important as shown in the plots. Generally
speaking, saliency will effectively run through the whole clustering tree in quark/gluon
tagging, where multiplicity plays an important role. So we don’t see much sensitivity
decrease along the log(1/∆) axis, while saliency passing from large angle down to small
angles.

4 Conclusions and Extended Studies

We have shown some interesting results regarding probing the hidden representations learnt by jet
tagging oriented deep neural networks, taking tree-structured recursive neural networks as an example.
A cross-task comparative study helps us with revealing and understanding the information encoded
in DNNs. In order to interpret the sensitivity within learnt neural net models in a physical way,
we combine saliency tree maps and jet lund plane, and presented the mapped sensitivity across
different jet classification tasks. Results show that when feeding in only low-level features of jet
constituents, there is still high relevance with general physics observables in the latent embeddings;
and the saliency maps give very characteristic patterns depending on the classification tasks.

we only presented results for RecNNs. Some of the methods are easier to explore within RecNNs
because of its physics-inspired architecture. In general, one can probe the embedding space or hidden
layers to gain some basic information. However, for instance, it will be very difficult for CNNs to
interpret in Lund Plane, since pixelization of jet images washes out the individual particle information.
We expect some more suitable methods can be found for these architectures. On the other hand,
neural networks directly featured with Lund coordinates might be another playground for Lund
Plane interpretability study. And a systematic study compares different neural network architectures
across different classification tasks will give more evident information on the model interpretability.
Depending on the specific architecture (image-based, 4-vectors based, or theory-motivated-variables-
based), different models might be learning different discriminating factors, thus combining these
learnt representations might help gain better performance.

Although these studies are carried on supervised classification problems , they may as well (or even
better) be applied to unsupervised learning cases. Beside the results presented here, there are more
interesting points to investigate. One important topic is the robustness of deep learning models. It’s
possible that saliency analysis will help us find better ways approaching robust machine learning
models. We hope this effort will develop further into more powerful practical use for physics structure
detection in the future.
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A Datasets and Neural Net Architecture

Datasets All the jet samples are generated by Pythia8 [26] and passed to Delphes [12] for fast detector
simulation. Jets have pT ∈ [500, 700] GeV. They are clustered using anti-kt algorithm [5] with FastJet [6]. Jet
clustering cone size is set to be R = 0.8.

Neural Net Settings The neural networks used in this work is similar as in [21, 8]. We embed jets along
with their clustering histories which are used as scaffold for building the recursive embedding process. Input
features (pi, ηi, φi, Ei, Ei/EJ , pTi, θi = 2arctan(exp (−ηi))) for constituent particles within jets are taken
as direct input fed into the neural networks. We use anti-kt clustered jets, then recluster using Cambridge-
Aachen algorithm for simplicity in Lund Plane analysis. The network architecture is (RecNN Embedding
(nembedding = 70)→ Dense(70)→ Dense(70)→ Sigmoid).

B Transferability of RecNN

In the study of Embedding Transferability, we use the embedding layer learnt from classification task A to obtain
jet embeddings for task B, then feed these transferred embeddings to a dense network for classification. (i.e.
freeze the embedding layer which is initialized with parameters learnt in task A). In Table 2, we show cross-task
transfer AUCs for all the combinations, with Base AUC denoting original full training AUC for B, and Transfer
AUC denoting results from the transferred embeddings.

Tasks Base AUC Transfer AUC

W/QCD→ Top/QCD 0.926 0.891
g/q→ Top/QCD 0.926 0.791

Top/QCD→W/QCD 0.957 0.911
q/g→W/QCD 0.957 0.822
W/QCD→ q/g 0.861 0.763

Top/QCD→ q/g 0.861 0.759
Table 2: Transferability results shown here. In Base AUC, the original trained AUC for the target task
is shown, while in resulting in Transfer AUC, transferred embedding is used for training the classifier.

C Linear Probing in Other Models

To quickly explore the latent space of other popular architectures, we take a few low-level feature based models
which have been used for jet tagging: FCN, LSTM, CNN.

• FCN: taking in four momenta of first 30 jet constituents in a pT -ordered manner. The architecture is
similar as in [23]. The dense hidden layers have 300, 102, 12, 6 nodes with ReLU activation. Output
layer has a sigmoid activation.

• LSTM: taking in four momenta of first 30 jet constituents in a pT -ordered manner. LSTM layer
outputs a 70 dimensional embedding, which then is fed into two ReLU dense layers with 50, 20 nodes.
Output layer has a sigmoid activation.

• CNN: taking in 37×37 grey scale images on (η, φ) plane with pT deposit as pixel intensity. We take
a similar architecture as in [3]: (Conv2D*16→ Conv2D*16→ MaxPooling2D→ Conv2D*8→
Conv2D*8→MaxPooling2D→ Flatten→ Dense(128)→ Dense(64)→ Sigmoid).

For simplicity, we only take Top/QCD classification as an instance here. Models are trained on datasets provided
in [4]. R2 scores are shown for 3 latest layers in Fig. C.

D Extra Plots for Saliency Lund Plane
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Figure 2: R2 scores for latest hidden layers for RecNN, FCN, LSTM, CNN. Hidden(-1) is the latest
layer, Hidden(-2) is the second latest, and Hidden(-3) is the third latest. For RecNN and LSTM
Hidden(-3) is just the embedding layer. For CNN, Hidden(-3) is the flatten layer.

Figure 3: Saliency sensitivity mapped onto Jet Lund Plane. Left: QCD and W jets in W/QCD
Classification; Middle: QCD and Top jets in Top/QCD Classification; Right: Quark and Gluon jets
in Quark/Gluon Classification.
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