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Abstract

We propose a Bayesian Optimisation problem in which the goal is to simultane-
ously optimise an objective whilst penalising aleatoric noise. Such problems are
ubiquitous in the experimental natural sciences in areas such as drug and materials
discovery. In our approach to the optimisation problem, we explicitly capture
aleatoric uncertainty in the surrogate model using a heteroscedastic Gaussian Pro-
cess. We extend the existing augmented expected improvement framework to the
heteroscedastic setting and present a new acquisition function, aleatoric noise-
penalised expected improvement (ANPEI) which applies a penalty to regions of the
input space with large aleatoric noise. We demonstrate improvements over a stan-
dard Bayesian Optimisation scheme on one and two-dimensional toy experiments
as well as a real-world problem where the goal is to identify soils with minimal
phosphorus content.

1 Introduction

The design of Bayesian Optimisation schemes to find effective molecules and materials is an important
problem in the natural sciences [1, 2]. In many settings, a secondary objective to a molecule or
material’s performance is its robustness to measurement noise (aleatoric noise) [3], a factor that can
be crucial to enabling production at scale.

We present an approach to Bayesian Optimisation that explicitly attempts to minimise aleatoric
uncertainty. Using the most likely heteroscedastic GP of [4] as the surrogate to model aleatoric
uncertainty, we extend the augmented expected improvement (AEI) acquisition function of [5] to the
heteroscedastic setting and introduce an alternative acquisition function, ANPEI, based on expected
improvement that attempts to minimise aleatoric uncertainty in the sampled points. On toy examples
as well as a real-world soil optimisation problem we demonstrate that our approach outperforms
a naive implementation of Bayesian Optimisation based on a vanilla GP in conjunction with the
expected improvement criterion. Lastly, we provide an open-source implementation of the most likely
heteroscedastic GP of [4] as well as code for its use as a surrogate model for Bayesian Optimisation.
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2 Heteroscedastic Bayesian Optimisation

We wish to perform Bayesian Optimisation whilst minimising input-dependent aleatoric noise. In
order to represent input-dependent aleatoric noise, a heteroscedastic surrogate model is required. We
take the most likely heteroscedastic GP approach of [4], adopting the notation presented there for
consistency. We have a dataset D = {(xi, ti)}ni=1 in which the target values ti have been generated
according to ti = f(xi) + εi. We assume independent Gaussian noise terms εi ∼ N(0, σi) with
variances given by σi = r(xi) where r is the function that represents input-dependent noise. In order
to perform Bayesian Optimisation, we wish to model the predictive distribution P (t∗ | x∗1, . . . ,x∗q)
at the query points x∗1, . . . ,x

∗
q . Placing a GP prior on f and taking r(x) as the assumed noise rate

function, the predictive distribution is multivariate Gaussian N(µ∗,Σ∗) with mean

µ∗ = E[t∗] = K∗(K +R)−1t (1)

and covariance matrix

Σ∗ = var[t∗] = K∗∗ +R∗ −K∗(K +R)−1K∗T , (2)

where K ∈ Rn×n, Kij = k(xi,xj), K∗ ∈ Rq×n, K∗ij = k(x∗i ,xj), K∗∗ ∈ Rq×q,
K∗∗ij = k(x∗i ,x

∗
j ), t = (t1, t2, . . . , tn)T , R = diag(r) with r = (r(x1), r(x2), . . . , r(xn))T , and

R∗ = diag(r∗) with r∗ = (r(x∗1), r(x∗2), . . . , r(x∗q))
T .

The Bayesian Optimisation problem may be framed as

x∗ = arg min
x∈χ

f(x), (3)

where the black-box objective f , to be minimised has the form

f(x) = g(x) + s(x). (4)

s(x) is, in this instance, the true noise rate function. We may write the expected improvement [6] in
terms of the targets t and the incumbent best objective function value, η, found so far as

EI(x) = E
[

(η − t)+
]

=

∫ ∞
−∞

(η − t)+ p(t |x) dt (5)

where p(t |x) is the posterior predictive marginal density of the objective function evaluated at
x. (η−t)+ ≡ max (0, η−t) is the improvement over the incumbent best objective function value η.

We propose two extensions to the expected improvement criterion. The first is an extension of the
augmented expected improvement criterion of [5] to the heteroscedastic setting:

het-AEI(x) = E
[
(η − t)+

](
1−

√
r(x)√

var[t∗] + r(x)

)
. (6)

where r(x) is the predicted aleatoric uncertainty at input x under the most likely heteroscedastic
GP and var[t∗] is the predictive variance of the heteroscedastic GP incorporating both aleatoric
and epistemic components of the uncertainty. We also propose a simple modification to the ex-
pected improvement acquisition function that explicitly penalises regions of the input space with
large aleatoric uncertainty. We call this acquisition function aleatoric noise-penalised expected
improvement (ANPEI) and denote it

ANPEI = αEI(x)− (1− α)
√
r(x) (7)
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(a) 1D Toy Objective (b) Noise Rate Function (c) Black-box Objective

Figure 1: Toy 1D Problem. The toy objective in a) is corrupted with heteroscedastic noise according
to the function in b). The combined objective, that when optimised maximises the sin wave subject to
the minimisation of aleatoric noise is given in c) and is obtained by subtracting the noise function
from the 1D sinusoid.

where α is a scalarisation constant which we set to 0.5 for the experiments in this paper. In
the multiobjective optimisation setting a particular value of α will correspond to a point on the
Pareto frontier. We use both the modification to AEI (het-AEI) and ANPEI acquisition function in
conjunction with the most likely heteroscedastic GP surrogate model in the experiments that follow.

3 Experiments

3.1 Implementation

Experiments were run using a custom implementation of Gaussian Process regression and most
likely heteroscedastic Gaussian Process regression. The code is available at https://github.com/
Ryan-Rhys/Heteroscedastic-BO. The squared exponential kernel was chosen as the covariance
function for both the homoscedastic GP as well as G1 and G2 of the most likely heteroscedastic
GP. The lengthscales, `, of the homoscedastic GP were initialised to 1.0 for each input dimension
across all toy problems after standardisation of the output values following the recommendation of
[7]. The signal amplitude σ2

f was initialised to a value of 2.5. The lengthscale, `, of G2 of the most
likely heteroscedastic GP [4] was initialised to 1.0, the initial noise level of G2 was set to 1.0. The
EM-like procedure required to train the most likely heteroscedastic GP was run for 10 iterations
and the sample size required to construct the variance estimator producing the auxiliary dataset was
100. Hyperparameter values were obtained by optimising the marginal likelihood using the scipy
implementation of the L-BFGS optimiser. The objective function in all cases is the principal objective
g(x) minus one standard deviation of the ground truth noise function s(x).

3.2 1D Toy Objective with Linear Noise Rate Function

Referring to Equation 4 from section 2, in the first experiment we take a one-dimensional sin wave

g(x) = sin(x) + 0.2(x) (8)

with noise rate function s(x) = 0.25x. These functions as well as the black-box objective f(x) are
shown in Figure 1. The Bayesian Optimisation problem is designed such that the first maximum in
1(a) is to be preferred as samples from this region of the input space will have a smaller noise rate. The
black-box objective in 1(c) illustrates this trade-off. In 3(a) we compare the performance of a Bayesian
Optimisation scheme involving a vanilla GP in conjunction with the EI acquisition function with the
most likely heteroscedastic GP in conjunction with the ANPEI and het-AEI acquisition functions.
The experiment is designed to contrast the performance of a standard Bayesian Optimisation scheme
against our approach in a situation where minimising aleatoric noise is desirable.

3.3 Branin-Hoo with Non-linear Noise Rate Function

In the second experiment, we consider the Branin-Hoo function as g(x) with a non-linear noise
rate function given by s(x) = 1.4x1

2 + 0.3x2. Given that this example is a minimisation problem,
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(a) 2D Branin-Hoo Function (b) Non-linear Noise Function (c) Black-box Objective

Figure 2: Toy 2D Problem. The Branin-Hoo objective function in a) is corrupted by the heteroscedastic
noise function in b) s(x1, x2) = 1.4x1

2 + 0.3x2. The black-box objective function c) is obtained by
summing the functions in a) and b). The sum is required to penalise regions of large aleatoric noise
because the objective is being minimised.

the black-box objective consists of the sum of the Branin-Hoo function and the noise rate function.
Contour plots of the functions are shown in Figure 2. A comparison, in terms of the best objective
function values found, between the vanilla GP and EI acquisition function with the most likely
heteroscedastic GP and ANPEI and AEI acquisition functions is given in 3(b).

3.4 Optimising the Phosphorus Fraction of Soil

In this real-world problem, we apply heteroscedastic Bayesian optimisation to the task of optimising
the phosphorus fraction of soil. Soil phosphorus is an essential nutrient for plant growth and is widely
used as a fertiliser in agriculture. While the amount of arable land worldwide is declining, global
population is expanding and so is food demand. As such, understanding the availability of plant
nutrients that increase crop yield is essential. To this end, reference [8] shows a curated dataset on
soil phosphorus, relating phosphorus content to variables including soil particle size, total nitrogen,
organic carbon and bulk density. In this experiment, we study the relationship between bulk soil
density and the phosphorus fraction, the goal being to minimise the phosphorus content of soil subject
to heteroscedastic noise. We provide evidence that there is heteroscedasticity in the problem by
comparing the fits of a homoscedastic GP and the most likely heteroscedastic GP in Figure 4 and
provide a predictive performance comparison based on negative log predictive density values in the
appendix. In this problem, we do not have access to a continuous-valued black-box function or a
ground truth noise function. As such, the surrogate models were initialised with a subset of the data
and the query locations selected by Bayesian Optimisation were mapped to the closest data points in
the held-out data. The following kernel smoothing procedure was used to generate pseudo ground
truth noise values:

1. Fit a homoscedastic GP to the full dataset.

2. At each point xi, compute the corresponding square error s2i = (yi − µ(xi))
2.

3. Estimate variances by computing a moving average of the squared errors, where the relative
weight of each s2i was assigned with a Gaussian kernel.

The performances of homoscedastic Bayesian Optimisation using EI and AEI and heteroscedastic
Bayesian Optimisation using ANPEI and AEI are compared in 3(c).

3.5 Discussion

In all experiments the most likely heteroscedastic GP and ANPEI combination/heteroscedastic AEI
combination outperform the homoscedastic GP and EI. The fact that the homoscedastic GP has no
knowledge of the heteroscedasticity of the noise rate function puts it at a serious disadvantage. In
the sin wave problem, designed to highlight this point, the heteroscedastic Bayesian Optimisation
scheme consistently and preferentially finds the first maximum as that which minimises aleatoric
noise. In contrast, the homoscedastic GP finds it impossible to differentiate between the two maxima.
The experiments provide strong evidence that modelling heteroscedasticity in Bayesian optimisation
is a more flexible approach to assuming homoscedastic noise.
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(a) 1D Toy Objective (b) 2D Branin-Hoo (c) Soil Phosphorus Fraction

Figure 3: Results of heteroscedastic and homoscedastic Bayesian Optimisation on the 3 problems
considered. Error bars are computed using 10 random initialisations.

4 Conclusion

We have presented an approach for performing Bayesian Optimisation with the explicit goal of
minimising aleatoric uncertainty in the suggestions. We posit that such an approach can prove useful
for the natural sciences in the search for molecules and materials that are robust to experimental
noise. We demonstrate concrete improvements on one and two-dimensional toy problems as well as a
real-world optimisation problem and contribute an open-source implementation of the most likely
heteroscedastic GP as a surrogate model for Bayesian optimisation. In future work, we plan to apply
our approach to molecular property optimisation [9]. To this end, it would be useful for investigate
the potential for replicates to improve the heteroscedastic BO scheme [10, 11, 12]. Furthermore, it
may be possible to leverage recent advances in combinatorial Bayesian optimisation [13, 14, 15] in
order to perform heteroscedastic Bayesian optimisation over molecular graphs.
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A Heteroscedasticity of Soil Phosphorus Fraction Dataset

The purpose of Figure 4 and Table 1 is to demonstrate the efficacy of modelling the soil phosphorus
fraction dataset using a heteroscedastic GP. The heteroscedastic GP outperforms the homoscedastic
GP on prediction based on the metric of negative log predictive density (NLPD)

NLPD =
1

n

n∑
i=1

− log p(ti|xi) (9)

which penalises both over and under-confident predictions.

B Related Work

The most similar work to our own is that of [16] where experiments are reported on a heteroscedastic
Branin-Hoo function using the variational heteroscedastic GP approach of [17] although to the best
of our knowledge this work does not consider sequential evaluations. A modification to EI, expected
risk improvement is introduced in [18] and is applied to problems in robotics where robustness to
aleatoric noise is desirable. [19, 20] implement heteroscedastic Bayesian Optimisation but don’t
introduce an acquisition function that penalises aleatoric uncertainty. [21, 22] consider the related
problem of safe Bayesian Optimisation through implementing constraints in parameter space. In this
instance, the goal of the algorithm is to enforce a performance threshold for each evaluation of the
black-box function and so is unrelated to our problem definition. In terms of acquisition functions,
[23, 24] propose principled approaches to handling aleatoric noise in the homoscedastic setting that
could be extended to the heteroscedastic setting. Our primary focus in this work however, is to
highlight that heteroscedasticity in the surrogate model is beneficial and so an examination of a subset
of acquisition functions is sufficient for this purpose.

(a) Dataset (b) Homoscedastic GP Fit (c) Heteroscedastic GP Fit

Figure 4: Comparison of Homoscedastic and Heteroscedastic GP Fits to the Soil Phosphorus Fraction
Dataset.

Table 1: Comparison of NLPD values on the soil phosphorus fraction dataset. Standard errors are
reported for 10 independent train/test splits.

Soil Phosphorus Fraction Dataset GP Het GP
NLPD 1.35± 1.33 1.00± 0.95
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