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Abstract

Phenomena in many areas of science are often modeled by complex computer
simulations that do not have a tractable likelihood function. Such implicit models
provide a major challenge for inference. Recently, techniques for likelihood-free
inference have been developed in which neural networks are trained as surrogate
models using the joint likelihood ratio and joint score as training data. These
quantities characterize the latent process of the simulator and can often be extracted
from its runs. We extend this approach and show how this augmented training data
can be used to provide a new, lower-variance cross-entropy estimator. In a real-life
particle-physics example we demonstrate that this new loss function leads to an
improved sample efficiency compared to previous methods.

1 Introduction

Many real-world phenomena are best described by computer simulations. Such simulators often
implement a stochastic generative process, which is based on a mechanistic model and parametrized
by θ. In practice, these simulators are used to generate samples of observations x ∼ p(x|θ), but the
density is only defined implicitly through the simulation code. Often, the generative process involves
latent variables and the density

p(x|θ) =
∫

dz p(x, z|θ) (1)

is intractable because of the integral over a large (and possibly highly structured) latent space.
Without a tractable likelihood, statistical inference on the parameters θ given observed data x is
challenging. This problem has prompted the development of likelihood-free inference methods such
as Approximate Bayesian Computation [1–4] and neural density or neural density ratio estimation
algorithms [5–23]. Nearly all of these established methods treat the simulator as a black box and
only use its capability to generate samples for a specified values of θ.

In Refs. [24–26] a new paradigm was introduced that exploits additional information that can be
extracted from the simulation. In particular, within the simulation where the latent variables z are
available, it is often possible to extract the joint likelihood ratio r(x, z) and the joint score t(x, z),

r(x, z|θ0, θ1) =
p(x, z|θ0)
p(x, z|θ1)

and t(x, z|θ0) = ∇θ log p(x, z|θ)

∣∣∣∣∣
θ0

, (2)

which are dependent on the latent variables z corresponding to a particular sample.

It was then shown that certain loss functionals that use the joint likelihood ratio and the joint score
are minimized by the likelihood ratio r(x|θ0, θ1), an otherwise intractable quantity. This motivates a
family of new techniques for likelihood-free inference in which the joint likelihood ratio and joint
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score are used as training data for neural networks. These networks serve as surrogate models for the
intractable likelihood or likelihood ratio. Experiments showed these new methods to be more sample-
efficient than previously established neural density and neural density ratio estimation techniques.
The authors of Refs. [24–26] coined the term “mining gold” for the process of extracting the joint
likelihood ratio and joint score from the simulator – while the augmented data require some effort to
extract, they are extremely valuable.

While the loss functionals originally proposed in Refs. [24–26] have the correct minima, they are
not necessarily the most sample efficient. In particular, the proposed losses are based on the mean
squared error (MSE) between the network prediction and the joint likelihood ratio or joint score,
which is often dominated by few samples for which these quantities are large. Here we extend
and improve that original work with two new algorithms for likelihood-free inference. The key
improvement are two new loss functions, which use an improved estimator for the cross entropy
based on the joint likelihood ratio and joint score. After introducing these new algorithm in Sec. 2,
we show its performance in a problem from particle physics in Sec. 3, before giving our conclusions
in Sec. 4.

2 Cross-entropy estimation with augmented data

Consider the problem of estimating the likelihood ratio r(x|θ0, θ1) given two balanced samples:
(xi, zi) ∼ p(x, z|θ0), labeled with yi = 0, and (xi, zi) ∼ p(x, z|θ1), labeled yi = 1. For each
simulated event we assume that the joint likelihood ratio r(xi, zi|θ0, θ1) and joint score t(xi, zi|θ0)
are also available.

The familiar binary cross-entropy loss functional is defined as

L[g(x)] = −
∫

dx
[
p(x|y = 1) log(g(x)) + p(x|y = 0) log(1− g(x))

]
. (3)

Typically and without using the joint likelihood ratio, the two terms are sampled separately, defining
a high-variance estimator of the cross entropy. But in the scenario where we have access to the joint
likelihood ratio, we can rewrite this as

L[g(x)] = −
∫
dx p(x, z)

[
s(xi, zi|θ0, θ1) log(g(x)) + (1− s(x, z|θ0, θ1)) log(1− g(x))

]
≈ − 1

N

∑
(xi,zi)∼p(xi,zi)

[
s(xi, zi|θ0, θ1) log(g(xi)) + (1− s(xi, zi|θ0, θ1)) log(1− g(xi))

]
=: LALICE[g(x)] (4)

where we define p(x, z) ≡ 1/2(p(x, z|θ0) + p(x, z|θ1)) and s(x, z|θ0, θ1) = [r(x, z|θ0, θ1) + 1]−1.

This improved cross-entropy estimator uses the exact s(x, z|θ0, θ1) in place of the class label yi ∈
{0, 1}, thus reducing the variance. In this way the samples drawn according to y = 0 also provide
information about the second y = 1 term in the loss function, and vice versa. By minimizing the
loss function we get an estimator ŝ(x) = argming LALICE, which can directly be translated to an
estimator for the likelihood ratio

r̂(x|θ0, θ1) =
1− ŝ(x)
ŝ(x)

. (5)

This defines the ALICE inference method1, which consists of mining the joint likelihood ratio from
the simulator, training a neural network on the improved cross-entropy estimator in Eq. (4), and using
this surrogate model for statistical inference on θ.

It is straightforward to show that the minimum of LALICE in the limit of the exact integral (or infinite
samples) corresponds to the true likelihood ratio function r(x|θ0, θ1). The interesting question is
how it performs with finite samples. It is to be expected that a likelihood ratio estimator based on the
ALICE estimator for the cross-entropy should perform as least as well as an estimator based on the
standard cross-entropy estimator in Eq. (3) (the “CARL” technique).

In analogy to the CASCAL and RASCAL methods of Refs. [24–26], we can define an additional
inference method which uses the joint score, i. e. an additional piece of information that describes the

1Approximate likelihood with improved cross-entropy estimator
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Figure 1: Left: Estimator fidelity as a function of the training sample size. As a metric we use
the expected mean squared error on the log likelihood ratio, see Ref. [25]. The new methods (red,
orange lines) are more sample efficient than the similar ROLR and RASCAL techniques. Right:
Corresponding expected exclusion limits, assuming 36 events distributed according to θ = (0, 0)T

and based on a large training set with 107 samples. We find an excellent performance of the ALICE
and ALICES methods, virtually indistinguishable from the RASCAL method and the true likelihood
ratio.

local (tangential) behavior of the likelihood function. If a parameterized likelihood ratio estimator
is implemented with a differentiable architecture such as a neural network, we can calculate the
gradient of the output ŝ(x|θ0, θ1) with respect to θ0 and similarly calculate the corresponding score

t̂(x|θ0, θ1) = ∇θ log r̂(x|θ0, θ1) = ∇θ log
(
1− ŝ(xi|θ, θ1)
ŝ(xi|θ, θ1)

)
(6)

of the r̂ estimator. For a perfect r̂ (or equivalently ŝ) estimator, this corresponding score t̂ will also
minimize the squared error loss with respect to the joint score t(x, z|θ0, θ1), which can be extracted
from the simulator [24–26]. Turning this argument around, we can use the joint score to guide the
training of the estimator. This is the idea behind the ALICES2 technique, which is based on the loss
function

LALICES[g] = LALICE[g]−
1

N

∑
(xi,zi)∼p(xi,zi)

[
α (1−yi)

∣∣∣∣∣∣t(xi, zi|θ0, θ1)−∇θ log
(
1− g(xi|θ, θ1)
g(xi|θ, θ1)

)∣∣∣∣∣
θ0

∣∣∣∣∣∣
2]
.

(7)
The factor (1− yi) is necessary to guarantee the correct minimum of the squared error on the score.
The hyper-parameter α weights the two terms in the loss function. This loss is the natural extension
of the the CASCAL loss function, but we expect it to reduce the variance compared to the CASCAL
approach for finite sample size.

3 Experiments

We experiment with the new methods in the particle physics problem introduced in Refs. [24, 25]. In
this real-world problem, the outcome of proton-proton collisions is characterized by 42 observables,
from which likelihood ratios and confidence limits on two model parameters are derived. We
first consider an idealized setting neglecting the detector response where the likelihood function is
tractable, which provides us with ground truth that can be used to evaluate the performance of the
algorithms. For a detailed description of the setup, see Ref. [25].

2Approximate likelihood with improved cross-entropy estimator and score
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We compare the new ALICE and ALICES methods to the similar CARL, ROLR, CASCAL, and RASCAL
techniques introduced in Refs. [24, 25] as well as to the SALLY and SALLINO methods. SALLY and
SALLINO approximate a statistical model that is accurate in the neighborhood of θ = (0, 0)T . The
methods are very sample efficient, but make approximations that limit their asymptotic performance.

Except for the new loss functions, we used the same architectures and hyper-parameters as in
Ref. [25]. In particular, we use fully connected networks with five hidden layers, 100 units each, and
tanh activation functions for both approaches. For ALICES we use α = 5, which was found to give
a good performance for the closely related CASCAL method [25].

The left panel in Fig. 1 shows the quality of the likelihood ratio estimate based on various sized
training samples for the new methods and compares them to the inference techniques presented in
Ref. [25]. As a performance metric we use an expected mean squared error on the log likelihood ratio,
as defined in Ref. [25]. Unsurprisingly, the ALICE and ROLR methods clearly outperform CARL,
which does not have access to the joint likelihood ratio. More significantly, we find that ALICE
outperforms ROLR, which does have access to the joint likelihood ratio. We conjecture that this
improvement can be attributed to the lower variance of the cross-entropy compared to the squared
error. More surprisingly, the ALICE method also outperforms the RASCAL method for larger training
sample sizes (≥ 105), even though ALICE does not have access to the joint score.

For smaller training sample sizes (≤ 105) the ALICES method outperforms the ALICE method, which
is not surprising given the additional information available during training. For larger training sample
sizes (≥ 105), the variance of the score actually deteriorates the performance of ALICES compared
to ALICE. We did not perform hyper-parameter tuning for α as a function of the training sample size,
which should ensure that ALICES performs at least as well as ALICE. We leave a systematic tuning
of the α parameter and an analysis of sources of variance in this approach for future work.

The right panel in Fig. 1 shows how this performance translates to high-quality inference results that
are virtually indistinguishable from the ground-truth limits and substantially better than the baseline
histogram analysis.

4 Conclusions

In this work, we have extended recently developed inference techniques for the setting in which the
likelihood is only implicitly defined through a stochastic generative model or simulator. By exploiting
the joint likelihood ratio that can be extracted from the simulator, we introduced an improved cross-
entropy estimator. This improved cross-entropy estimator is used to define two new likelihood-free
inference techniques: ALICE and ALICES.

Our experiments comparing ALICE and ALICES with the other recently developed techniques indicate
that they are significantly more sample efficient than ROLR, CASCAL, and RASCAL techniques. We
attribute this to the lower variance of the improved cross-entropy estimator. For smaller training
sample sizes, there are still advantages to the SALLY and SALLINO techniques.

We note that it is possible to use a hybrid of the traditional cross-entropy of Eq. 3 and the improved
cross-entropy Eq. 4. This would be useful in situations where one may not have access to the
joint ratio for practical reasons or because some training samples come from real data instead of a
simulation.

The ubiquity of simulators and other implicit models indicates there is enormous potential for
likelihood-free inference techniques. The use of augmented data improves the sample efficiency
of these techniques significantly, and these results motivate further study of variance reduction
techniques that leverage this augmented data.
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