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Abstract

In recent years, there has been an increase of surveys searching for extra solar
planets, giving a consequent dramatic increase in the number of detected microlens-
ing events and the amount of data observed for each event. Although it is still
possible to search and classify a small number of events by human interaction, such
a process is always prone to error, and is slow and labor-intensive. In this work,
we address an initial stage for identifying features that will be useful in the task
of distinguishing between single-lens and non-single-lens microlensing events to
increase the efficiency of exoplanet discovery.

1 Introduction

One of the first effects to be described by General Relativity was the bending of light around massive
bodies, as a consequence, the light is deviated from its straight path, and the massive object acts
as a lens. Although Newtonian gravity also predicts this effect, the angle is half the predicted by
General Relativity. This phenomenon is called gravitational lensing, and one of its consequences is
the production of multiple images of a background luminous source; when the angular separation of
the images is smaller than the resolution capabilities of telescopes, it is called microlensing [4].

In microlensing, unfortunately the only observable is the amplification of the light-curve of the
background source. The most basic example is the case of a single lens with a single source; the
model which describes the expected amplification has a closed form and is straightforward to compute,
but if more lenses are present its description is more complex. Moreover, there are other additional
effects which could produce a deviation from the basic model, for example, a binary source, an
extended source, etc [3].

The most common cause for observed microlensing events is due to stellar-mass objects, and these
are mainly observed in the direction of the galactic bulge. Likewise, the majority are produced by
single and binary lenses, although the basic model give some information about the population and
distribution of stellar objects on the galaxy, there is a stronger interest in the study of binary events
because the possibility of one of the lenses being an exoplanet [e.g. 12, 10]. This is main focus in the
modern microlensing surveys.

Given the possibility of exoplanetary discoveries, there is a preference for the study of binary lenses.
As a result, the observation of microlensing events has increased in recent years, but at the same time
this means that it is necessary to study and model a greater number of events [see 6, 4]. Events due to
a single stellar source and single point-mass lens are relatively straighforward to model. However,
binary lens events, are far from trivial, having a discontinuous non-linear parameter probability
space of at least 7 dimensions. Typically, a binary (or planetary) microlensing model takes hours of
computation time on a CPU cluster or GPU [8].
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Despite the increase of the number of data, the different models are best-fitted at different stages,
as is it not easy beforehand to identify what model is adequate. Furthermore, once a light-curve is
observed, the identification of the possible type of event is most commonly done by human selection,
which with the increase of observations makes the process slow or could leave some events without
being classified at all.

Here we present the first stage of an ongoing work were we try to develop an identification system
which would enter the pipeline to separate the low-priority single lenses from binary, possibly
planetary, or more complex models, that need a more detailed analysis.

2 Data Mining

Over the years, the application of machine learning algorithms in microlensing has been quite
limited, and it has been mainly focused in detection and identification over other astronomical
processes [e.g. 13, 1]. There have been a small number of works that have implemented neural
networks or evolutionary algorithms to model the parameters of binary models [11], but the preferred
technique has been to do a parameter estimation through a χ2 minimization [5]. These works have
focused on identifying microlensing events from ensembles of light curves with other type of signals.
Our task is rather to identify anomalous (non point-source point-mass lens) light curves from an
ensemble of known microlensing light curves. The task is complicated by the presence of random
and systematic noise, which is difficult to remove. There is currently no standard set of features to
use for the classification task.

Likewise, although there is an increasing amount of data found since the 90’s, there is a lack of a
collected data-sets to use for classification so we need to selected such a set from modeled events
across surveys.

2.1 Outlier Clustering

Once an signal is identified as a microlensing event, it is straightforward to fit a single-lens model,
which has only 3 non-linear parameters, the time of the event tE , the time of maximum amplification
t0 and the normalized impact parameter µ0 [see 4]. Generating this model is computationally
inexpensive. Taking this as an advantage, we can use it to find the sections of the light-curve which
do not agree with it. But given the existence of noise in the data it is not easy to set a simple rule
to discriminate what should be considered as bad points. Instead, we used different unsupervised
algorithms to find data points which are adequate for the model.

As mentioned before, there is not a simple set of features to select, for this reason, we constructed
and tried several features to be derived for each data point. As a result we were able to reduce it to
only two features. The simplest is just the arithmetic difference between the data point and the model,
datai −modeli, which for a perfect fit should be zero. The second is

χ2
i = (datai −modeli)

2/σ2
i , (1)

where σi is the measurement error of the data point. This feature considers how well each individual
point is fitted. Although, this could be used by itself, we found that it tends to underestimate points
with large errors.

We combined and used Robust covariance, One-Class SVM, Isolation Forest and Local Outlier
Factor(LOF) to find the outliers [9, 7, 2], and we set the rule that at least three of the algorithms must
find the same point to be considered as a real outlier. Examples of single and binary lenses and how it
can distinguish which sections of a light-curve belong adequately to the model is shown in Figure 1.
This is important, as the capacity to detect which points can be considered as bad points for the fitted
model will be used later.

2.2 Time Feature

Once we have found points which can be considered outliers and do not agree with the model, we
need to decide how to obtain information from them. We took into consideration expected signal
from random noise and from an actual anomaly. Given that the amplification could not be cleanly
used, as it is possible to have a high valued set of points due to other unknown effects that are not
part of the lens or source properties, we decided that it was clear that:
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Figure 1: Comparison of the the outlier detection for microlensing events. a) Single lens event with
noisy data. b) Binary lens event with a clear difference from a single lens. c) Binary lens event which
very subtle difference.
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Figure 2: Comparison of the continuous number of outliers and their temporal distribution. a) A
single event, the counts remains evenly across time of the event. b) Binary lens event where there is
a great difference, and it consumes almost all the time of he event. c) Binary lens event with close
apparent similarity with a single lens, but it is possible to see increase of outliers during a section of
the event.

• An anomaly should have a consecutive and continuous set of outliers which should not
happen for random noise.

• It should take a sensible proportion of time from the event, as indeed complex effects on the
lensing system take some time to disappear from the light-curve.

To extract this, we simply count the consecutive outliers and calculated the time it takes on the light
curve while compensating for small separation of good data points. This is presented in Figure 2,
where the count is in the y axis while the x axis is the light-curve time.

From the different events, it is possible to see that the single lens, as expected, has a more or less
constant number of outliers which is expected if these are indeed coming from random noise. For the
binary cases, the increase of the count gives the idea of a clear deviation from the model which does
not come from noisy data. From this, we can extract the fractional time and number of consecutive
outliers which will become a feature that can give information about the existence of an anomaly.
This anomaly would give the information we require to be able to classify the different type of events.

3 Future work

This is an ongoing work, and we are continuing to evaluate potential features that can be used to
extract our required information from the different events. From this we aim to build an appropriate
data-set which could be used, as a first step, to separate between single and non-single lenses. In the
future, we hope to be able to no only select anomalous light curves from an ensemble, but also to
classify the type of binary that a selected light-curve belongs to.
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