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Abstract

The first detection of gravitational waves (GWs) from a binary black hole merger in
2015 was a milestone in modern physics, and just recently awarded with the Nobel
Prize. However, despite the unparalleled sensitivity of the LIGO detectors, there
still exist challenges in the analysis of the recorded data. We apply CONVWAVE,
a dilated, fully convolutional neural net directly on the time series strain data to
identify simulated GW signals from black hole mergers in real, non-Gaussian
background measurements from the LIGO detectors. CONVWAVE performs well
on simulated signals with masses and distances chosen from ranges that contain
the estimated parameters of all previously detected real events. It efficiently
runs on strain data of arbitrary length from any number of detectors in real time.
Through our proposed evaluation approach, it has the potential to develop into a
complementary trigger generator in the existing LIGO search pipeline.

1 Introduction

One of the most fascinating predictions of Albert Einstein’s theory of general relativity was that its
underlying equations allow wave-like solutions (Einstein, 1915, 1916). It was shown that accelerating
masses are expected to lose energy by emitting gravitational waves (GWs) which propagate as
perturbations in the metric of spacetime, stretching and compressing space as they pass through it.

After Hulse & Taylor (1975); Taylor et al. (1979) found indirect experimental evidence for GWs
in the 1970s, in 2015 for the first time the Laser Interferometer Gravitational-Wave Observatory
(LIGO) directly observed the characteristic chirp signature of two black holes approaching and finally
merging after circling around each other in a binary black hole (BBH) system 1.3 billion lightyears
from Earth (Abbott et al., 2016a). This outstanding achievement was recently awarded the Nobel
Prize in Physics 2017. Yet even for violent events such as black hole mergers, the relative length
changes on Earth due to gravitational waves are only of O(10−21); the equivalent of measuring the
Earth–Sun distance to the precision of the size of a water molecule.

Although the LIGO detectors perform the most precise measurements attained by humankind to
this day, many challenges and open problems remain in the analysis of the data. The task is to
identify astrophysical signals in the non-Gaussian, non-stationary detector noise from strain data,
the scalar time series measuring the relative length difference between the two arms of a giant laser
interferometer. Non-Gaussian transients, also called glitches, stem from, e.g., instabilities in the
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power grid, thermal excitations of the mirror suspensions, or scattered laser light.1 At the current
sensitivity, glitches occur several orders of magnitude more frequently than real GW signals (e.g.
Abbott et al., 2016c). For more details about the LIGO instruments, see also Aasi et al. (2015).

Current search pipelines for compact binary coalescences at LIGO are based on matched filtering
(Allen, 2005; Allen et al., 2012), which by construction is optimal for stationary Gaussian noise.
Through various signal consistency tests, the pipeline can also deal with non-Gaussian and non-
stationary noise. However, in matched filtering one needs to first process data from each detector
individually and afterwards combine the results, which does not scale well in the number of detectors.
Increasing this number is crucial for both the sensitivity and the ability to localize the source of
astrophysical events. Hence, machine learning can yield two potential improvements: Firstly, it may
scale better computationally. Secondly, it can flexibly learn the structure of the specific glitches in
each detector, making it easier to distinguish them from actual signals.

1.1 Related work

Most previous applications of machine learning for the detection task use trigger data from the
matched filtering pipeline as input (Adams et al., 2013; Baker et al., 2015; Hodge, 2014; Kapadia
et al., 2017). A trigger is a collection of numbers that describe a potential event, e.g., the time of
merger, parameters of the matched template, the signal-to-noise ratio (SNR) or manually tuned test
statistics to distinguish glitches from signals. There is also a related body of work on a slightly
different task, namely glitch classification and denoising (Powell et al., 2015, 2016; Mukund et al.,
2016; Torres-Forné et al., 2016; Zevin et al., 2017; George et al., 2017).

George & Huerta (2016) and Gabbard et al. (2017) are closest to our work, as they also apply
1D-CNNs to detect GWs in strain data. Using real LIGO noise, taken from advanced LIGO’s first
observing run, George & Huerta (2017) have shown, for the first time, that CNNs can detect real
GW signals and estimate their parameters, in particular GW150914, after training on noise from
GW151226.2 They apply a sliding window individually to each detector for prediction on longer
recordings than the fixed size input. Our architecture differs in that we do not use fully connected
layers, thereby avoiding repeated computation of the same convolutions, and stack recordings from
different detectors to a single, multi-channel input. Our present work focuses on how to label and
evaluate detections for continuous output, and not on improving the detection sensitivity.

1.2 Contributions

We propose an approach for real-time tagging of multi-detector strain data recordings to detect GWs
using a deep, dilated, fully convolutional neural net.3 Our approach, nicknamed CONVWAVE, has
the following properties: a) It directly processes arbitrary length inputs during training and testing
without computational overhead, giving outputs with full time resolution, b) the model inherently
handles any number of detectors (no individual application for each detector), c) our method adapts
to unseen events and detector characteristics, d) the net can potentially be developed into a real-time,
complementary trigger generator for the current search pipeline. To this end, we propose a labeling
procedure and detection metrics for continuous predictions. In experiments with simulated signals and
real detector recordings from the LIGO detectors, we demonstrate the applicability of CONVWAVE.

2 Methods

2.1 Data

Our data are in principle created by taking a stretch of real detector noise as background,
and adding a simulated GW signal to it (“injection”). For the background noise, we use
4096 s chunks of strain data recorded by the LIGO detectors around the events GW150914 and
GW151226 and down-sample them to 2048 Hz. Simulated waveforms are generated with the

1For more information about glitches, see e.g. the GravitySpy “Field Guide”: https://gravityspy.org.
2The used data are available at the LIGO Open Science Center (LOSC): https://losc.ligo.org/events.

See also Vallisneri et al. (2015).
3All code is publicly available at: https://github.com/nikikilbertus/convwave.
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Figure 1: We show a training example with the corresponding labels including the fuzzy zones.

pycbc.waveform.waveform.get_td_waveform function of the PyCBC software package (Can-
ton et al., 2014; Usman et al., 2016; Nitz et al., 2017). In our experiments, we use a particular
BBH waveform approximant tuned to numerical relativity, approximant=’SEOBNRv4’ (Bohé et al.,
2017). We chose the minimum frequency f_lower=15. Both masses and the distance are drawn
uniformly at random between 2 to 50 solar masses and 100 Mpc to 1700 Mpc respectively. For now,
the antenna pattern function for H1/L1 was ignored for simplicity.

We repeatedly select 12 s of recording at random from both the Hanford and Livingston data and
inject up to two waveforms, each cropped to a random length uniformly between 1 s to 3 s. Further,
for each waveform we introduce a small random difference in injection time between the detectors,
consistent with their distance. Different injections do not overlap within individual detectors. We
whiten the results using the PSD obtained from the corresponding detector measurements, and apply
a band pass from 42 Hz to 800 Hz. In total, we generate 5 · 4096 such examples of length d :=
12 s · 2048Hz = 24 576 for both training and testing. The waveforms used for training and testing
are sampled from the same parameter space, but do not overlap. We also generate a label vector of
the same length, marking the parts of the time series containing an injection.

The naïve label vector y ∈ {0, 1}d consists of ones during injections, and zeros everywhere else. We
use these labels in our first experiments. However, real black hole merger waveforms do not have
such a well-defined beginning. Furthermore, in practice it suffices for a detection to tag only the
salient coalescence around the peak of the waveform, see Figure 1. There is no natural definition
of the coalescence period, hence sharp on/off transitions are both artificial and overly demanding.
We address this problem by a) defining the coalescence period as the full width at half maximum
(FWHM) of the waveform envelope computed via a Hilbert transform, and b) adding fuzzy zones
around the coalescence during training, which are parts of the (predicted) label that are ignored
when computing the loss (faintest 20% of the FWHM interval). This helps to avoid the net being
“distracted” by negative feedback from the arbitrary edges. Figure 1 also illustrates this procedure.

2.2 Training and Evaluation

Inspired by Google’s WaveNet (van den Oord et al., 2016), we use a stack of dilated convolutions
to get a large receptive field with a reasonable number of layers. We use 12 convolutional layers
with exponentially increasing (1, 2, 4, . . . , 2048) dilations (kernel size 2; 64 kernels each), ELU
activations, and batch-normalization, resulting in a receptive field of 4096 (2 s). To preserve the
resolution from input to output we use zero-padding. One additional conv-layer with kernel size 1 at
both the top and bottom of the stack adjusts the number of channels for the input from 2 to 128, and
from 128 to 1 for the output. We train using Adam (Kingma & Ba, 2014) and mini-batches of size 16,
reducing the initial learning rate of 0.0001 by a factor of

√
2 every 3 epochs. The weighted binary

cross-entropy loss uses 0 as a weight for the fuzzy zones, and 1 everywhere else, effectively ignoring
the prediction in the fuzzy zones. We implemented CONVWAVE in PyTorch.

Besides the loss, we report the accuracy Acc := 1/d ·
∑d

i=1 1{yi = round(ŷi)}, with the predic-
tion ŷ ∈ [0, 1]d and the true label y ∈ {0, 1}d. For the following metrics, we post-process the
prediction ŷ by smoothing it using a rolling average with window size 20. We consider an injection
as detected, iff round(ŷ) is one for more than a fraction of θdet ∈ [0, 1] of the FWHM, giving true
positives (TP) and false negatives (FN). Further, we define a false positive (FP), or false alarm,
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Table 1: We report test loss and accuracy using naïve labels on the five datasets (characterized by
median, minimum and maximum SNR) with and without curriculum learning (CL), and the injection
detection evaluation using the FWHM characterization of coalescences for θdet = 0.1, θfa = 0.9.
Results differ by < 3% points between the two datasets; we therefore only report for GW151226.

SNR H1 SNR L1 Naïve Label Naïve + CL Coalescence Detection (FWHM)

Distance (Mpc) Median Max
Min Median Max

Min Loss Acc. Loss Acc. Loss Acc. Det. Ratio FA Ratio

100–300 6.53 28.47
0.59 6.38 26.64

0.59 0.112 96.6% — — 0.015 99.8% 97.4% 0.4%
250–500 3.48 11.58

0.31 3.43 10.78
0.32 0.151 95.4% 0.145 95.6% 0.016 99.8% 93.8% 1.0%

400–800 2.28 7.42
0.21 2.23 7.01

0.20 0.190 94.2% 0.178 94.4% 0.016 99.8% 89.3% 0.7%
700–1200 1.40 4.15

0.13 1.37 3.77
0.14 0.226 92.6% 0.220 92.8% 0.018 99.7% 75.2% 1.5%

1000–1700 0.97 2.93
0.10 0.95 2.76

0.09 0.260 91.2% 0.252 91.4% 0.021 99.7% 64.1% 1.6%

Figure 2: Example FWHM predictions from the 1000–1700 Mpc test set (GW150914).

as a series of ones in round(ŷ) disagreeing with y on a fraction of more than θfa ∈ [0, 1].4 For a
meaningful evaluation, we also need a measure for the “faintness” of an event. One natural choice is
the peak signal-to-noise ratio (SNR), the ratio of the peak amplitude of the (whitened) waveform to
the standard deviation of the (whitened) noise.5

3 Experiments and Results

First, we split the overall distance range 100 Mpc to 1700 Mpc into five subranges corresponding to
five levels of “difficulty”.6 In Table 1, we summarize the results of training our network for 50 epochs
for each range a) from scratch, and b) for curriculum learning, i.e., sequentially transferring the
weights from easier to harder datasets. In these first experiments, we predict the complete injections;
i.e., the label vector is 1 whenever an injection is present (naïve labels). In Table 1, we show the
average loss and accuracy on the test sets. Curriculum learning yields only marginal improvements.

Next, we evaluate the detection task as described in section 2, i.e, we train and predict (for 50 epochs,
using our fuzzy zones for both) on the FWHM intervals of the signal envelopes. As for the previous
experiments, we performed minimal fine-tuning on our hyper-parameters. In Table 1, we report the
loss and accuracy (for comparison), as well as the detection ratio TP/(TP+ FN) and false alarm ratio
FP/(TP + FP). The results show that CONVWAVE reliably recovers coalescences over a wide range
of SNRs, while triggering few false alarms. For an example prediction, see Figure 2.

As a final test, we apply the model that we learned on the GW151226 data using FWHM labels
(distances 1000–1700 Mpc) to the full 4096 s around the GW150914 event. Again, we smooth the
prediction with a rolling average (window size 200). We indeed successfully recover the event at
the correct location without a single false alarm, proving that our method is also able to generalize
beyond the characteristics of the particular waveforms and noise it was trained on.

4 Conclusion

CONVWAVE is a fully convolutional neural net architecture with dilated kernels to detect gravitational
wave signals from compact binary coalescences in strain measurements from any number of detectors.

4There is no notion of true negatives in a continuous prediction.
5We remark that this differs from the SNR definition used in the context of matched filtering (Allen, 2005).
6Previous detections were estimated at 410, 440, 880, 540 and 40 Mpc (Abbott et al., 2016a,b, 2017a,b,c).
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We evaluate CONVWAVE on real measurements from the LIGO Hanford and Livingston detectors
and simulated waveforms with mass and distance parameter ranges that include the estimates for
all actual events detected so far. Further, we use fuzzy zones as a trick to improve convergence
during training, and introduce an evaluation procedure for coalescence detection based on the FWHM
of the signal envelope. Following our encouraging preliminary results, we plan to investigate how
CONVWAVE can be developed into a complementary trigger generator for the LIGO search pipeline,
and properly compare its performance to matched filtering.
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