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Abstract

The importance of learning from spatiotemporal data has been growing with the
increasing number of data sources distributed over space. While numerous studies
have been done for analyzing the spatiotemporal signals, existing models have
assumed that the heterogeneous data sources in spatial domain are equally reliable
over time. In this paper, we propose the novel method that infers the time-varying
data quality level based on the local variations of spatiotemporal signals without
explicitly assigned labels. Furthermore, we extend the formulation of the quality
level by combining with graph convolutional networks to exploit the efficient
architecture. Finally, we evaluate the proposed method by simulating a forecasting
task with real-world climate data.

1 Introduction

The recent advances with GPS-equipped technology have facilitated the collection of large spatiotem-
poral datasets. As the increasing number of spatiotemporal data, many have proposed representing
this data as time-varying graph signals in various domains, such as sensor networks [8, 14], climate
analysis [2, 6], and traffic control systems [5, 10]. Furthermore, the study of time-varying graph
signals has been applied to biology [7, 11].

While many works have been proposed to exploit the spatial structures and temporal signals, most
models have implicitly assumed that each signal source in a structure is equally reliable over time,
and not differentiating data quality of different sources at different time steps. However, a large
amount of data are from heterogenous sources that have different levels of noise [9, 12]. Moreover,
the noises of each source can be time-varying due to abrupt malfunction of sensors. In order to fully
utilize the credibility of each single source over time, it is important to be able to model a different
level of data. However, relying on domain experts to manually assign such labels is laborious and
expensive, making it extremely challenging to build a model that can differentiate between high and
low quality sources in an unsupervised setting.

In this paper, we consider the learning problem of spatiotemporal signals, where temporal signals
have been observed at different locations which can be represented by time-varying graph signals.
Given a graph and observations, we propose a model that is able to exploit the structural information
(spatial features) as well as the temporal behaviors (time series). On top of the time-varying graph
signals, we implement graph-based neural networks which encode the level of data quality at each
vertex into a scalar by looking at signals observed at the set of all the vertices adjacent to the vertex.
Here is a summary of the key contributions of the paper.

• Define data quality level at a vertex in a graph using the local variation of the vertex.
• Combine the quality level with an objective function defined by a given task.
• Demonstrate that the data quality is an essential factor which can improve performance of

forecasting.
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2 Preliminaries

Local Variation We focus on the graph signals defined on an undirected, weighted graph G =
(V, E ,W), where V is a set of vertices with |V| = N and E is a set of edges. W ∈ RN×N is a
random-walk normalized weighted adjacency matrix which provides how two vertices are relatively
close. When the elements Wij are not be expliticly provided by dataset, the graph connectivity can be
constructed by various distance metrics, such as Euclidean distance, cosine similarity, and a Gaussian
kernel [1], on the vertex features V ∈ RN×F where F is the dimension of the features.

Once all the structural connectivity is defined, the local variation can be defined by the edge derivative
of a given graph signal x ∈ RN defined on every vertex [13].
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where e = (i, j) is defined as a direction of the derivative and x(i) is a signal value on the vertex i.
The graph gradient of x at vertex i can be defined by Eq. 1 over all edges joining the vertex i.
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where Ni is a set of neighbor vertices of the vertex i. While the dimesion of the graph gradient is
different due to the different number of neighbors of each vertex, the local variation at vertex i can be
defined by a norm of the graph gradient:

‖∇ix‖22 =
∑
j∈Ni

Wij(x(j)− x(i))2, (3)

Eq. 3 provides a measure of local variation of x at vertex i. As it indicates, if all neighboring signals
of i are close to the signal at i, the local variation at i should be small and it means less fluctuated
signals around the vertex. As Eq. 3 shows, the local variation is a function of a structural connectivity
W and graph signals x.

The concept of the local variation is easily generalized to multivariate graph signals of M different
measures by repeatedly computing Eq. 3 over all measures.

Li = (‖∇ix1‖22, · · · , ‖∇ixm‖22, · · · , ‖∇ixM‖22), (4)

where xm ∈ RN corresponds the mth signals from multiple sensors. As Eq. 4 indicates, Li is a
M dimensional vector describing local variations at the vertex i with respect to the M different
measures.

Finally, it is desired to represent Eq. 4 in a matrix form to be combined with graph convolutional
networks later.

L(W,X) = (D + W)(X� X)− 2(X�WX), (5)

where D is a degree matrix defined as Dii =
∑

j Wij and � is an element-wise product operator. X
is a N ×M matrix describing multivariate graph signals on N vertices and xm is a mth column of X.
L ∈ RN×M is a local variation matrix and Lim is the local variation at the vertex i with respect to
the mth signal.

Data Quality Level While the term of data quality has been used in various ways, it generally
means “fitness of use” for intended purposes [3]. In this section, we will define the term under the
property of data we are interested in and propose how to exploit the data quality level into a general
framework.

Given a multivariate graph signal X ∈ RN×M on vertices represented by a feature matrix V ∈ RN×F ,
we assume that a signal value at a certain vertex i should not be significantly different with signals
of neighboring vertices j ∈ Ni. This is a valid assumption if the value at the vertex i is dependent
on (or function of) features of the vertex Vi when an edge weight is defined by a distance in the
feature vector space between two vertices. In other word, if two vertices have similar features, they
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are connected to form the graph structure and the signal values observed at the vertices are highly
likely similar. There are a lot of domains which follow the assumption, for instance, geographical
features (vertex features) and meteorological observations (graph signal) or sensory nervous features
and received signals.

Under the assumption, we define the data quality at a vertex i as a function of local variations of i:

wi = q(Li), (6)

It is flexible to choose the function q. For example, wi can be defined as an average of Li. If so, all
measures are equally considered to compute the data quality at vertex i. In more general sense, we
can introduce parameterized q by Φ and learn the parameters through data. [4] propose a method that
learns parameters for graph-based features by the layer-wise graph convolutional networks (GCNs)
with arbitrary activation functions. For a single layer GCN on a graph, the latent representation of
each node can be represented as:

Z = σ(ÂXΘ), (7)

where Â provides structural connectivities of a graph and Θ is a trainable parameter matrix. σ is an
activation function. By stacking σ(ÂXΘ), it is able to achieve larger receptive fields with multi-layer
GCNs. See details in [4].

We can replace ÂX with L which is also a function of the weighted adjacency W and the graph
signal X. Note that values in row i of ÂX and L are a function of values at i as well as neighbors of i.
Although L only exploits nearest neighbors (i.e., 1-hop neighbors), it is possible to consider K-hop
neighbors to compute the local variations by stacking GCN before applying Eq. 3. The generalized
formula for the data quality level can be represented as:

Z = σK(ÂσK−1(Â · · ·σ1(ÂXΘ1) · · ·ΘK−1)ΘK), (8)
w = σL(L(W,Z)Φ). (9)

where K is the number of GCN layers and w = (w1, w2, · · · , wN ) is the data quality level of each
vertex incorporating K-hop neighbors. We propose some constraints to ensure that a higher wi

corresponds to less fluctuated around i. First, we constrain Φ to be positive to guarantee that larger
elements in L cause larger LΦ that are inputs of σL. Next, we use an activation function that is
inversely proportional to an input, e.g., σL(x) = 1

1+x , to meet the relation between the data quality
wi and the local variations Li. Once w is obtained, it will be combined with an objective function to
assign a penalty for each vertex loss function.

3 Model and Experiments

DQ-LSTM Figure 1 illustrates how data quality networks with LSTM (DQ-LSTM) consists
of submodules. Time-varying graph signals on N vertices can be represented as a tensor form,
X ∈ RN×M×T where the total length of signals is T . First, the time-varying graph signals for each
vertex are segmentized to be fed into LSTM. For example, X (i, :, h : h+k−1) is one of segmentized
signals on vertex i. Second, the graph signals for all vertices at the last time stamp X (:, :, h+ k − 1)
are used as an input of GCNs followed by DQN. Hence, we consider the data quality level by looking
at the local variations of the last signals and the estimated quality level wi is used to assign a weight
on the loss function defined on the vertex i. We use the mean squared error loss function.

For each vertex i, DQ-LSTM repeatedly reads inputs, predicts outputs, and updates parameters as
many as a number of segmentized length k time series.

Li =
1

ni

ni∑
j=1

wi‖X̂ (i, :, k + j − 1)−X (i, :, k + j − 1)‖22 + β‖Φ‖22 (10)

where ni is the number of segmentized series on vertex i and X̂ (i, :, k + j − 1) is a predicted value
from a fully connected layer (FC) which reduces a dimension of an output vector from LSTM.
L2 regularization is used to prevent overfitting. Then, the total loss function over all vertices is
L = 1

N

∑N
i=1 Li
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Table 1: Forecasting mean absolute error (MAE)

LSTM GCN-LSTM
(K=1)

GCN-LSTM
(K=2)

DQ-LSTM
(K=0)

DQ-LSTM
(K=1)

WU7 0.5823
(0.0656)

0.5152
(0.0081)

0.5073
(0.0261)

0.5096
(0.0152)

0.4788
(0.0111)

WU8 0.5911
(0.0221)

0.5356
(0.0398)

0.5151
(0.0272)

0.5087
(0.0117)

0.4856
(0.0086)

WB7 0.4725
(0.0277)

0.4687
(0.0348)

0.4411
(0.0321)

0.4588
(0.0148)

0.4108
(0.0129)

WB8 0.5435
(0.0376)

0.5412
(0.0483)

0.5296
(0.0164)

0.4602
(0.0440)

0.4574
(0.0178)

..
..

M

GCN DQN

…

x1 x2 xkN

FC

Loss
wi

Figure 1: Architecture of DQ-LSTM that consists
of GCNs followed by the data quality network
DQN and LSTM. GCNs are for localized features
from given graph signals (different colors indigate
different signals) and DQN computes the data qual-
ity of each vertex. Each loss function on each ver-
tex is weighted by the quality level wi. Note that
the dot-patterned circles denote the current vertex.

Dataset In order to have a fair comparison,
we use real-world meteorological measurements
from two commercial weather service provid-
ing real-time weather information, Weather Un-
derground(WU)1 and WeatherBug(WB)2. Both
services use observations from automated per-
sonal weather stations (PWS). In the dataset,
all stations are distributed around Los Angeles
County and geographical characteristics where
the station is located at are provided. These
characteristics would be used as a set of input
features V to build a graph structure. The list of
the static 11 characteristics is, Latitude, Longi-
tude, Elevation, Tree fraction, Vegetation frac-
tion, Albedo, Distance from coast, Impervious
fraction, Canopy width, Building height, and
Canopy direction. At each station, a number of
meteorological signals are observed through the
installed instruments. The types of the measurements are Temperature, Solar radiation, Pressure, and
Relative humidity. 2 months observations from each service, July/2015 and August/2015, denoted as
7 and 8, respectively.

Forecasting experiment Since all models are dependent on the previous observations, we set the
same lag length k = 10. Thus, k-steps past observations are fed into them to predict next values.
β = 0.05 is used for the L2 regularization of the final layer. For each month dataset, we split it into
three subsets, train(60%)/valid(20%)/test(20%) sets. Among given measurements, Temperature is
used as a target measurement and we repeat 20 times with random initializations.

Experimental results are summarized in Table 1. We report the forecasting mean absolute error
(MAE) with standard deviations. Overall, models considering a given graph structure outperform
a simple LSTM. Note that the graph structure is not given explicitly but constructed by features of
vertices. While the connectivities and weights are dependent on the distance function, it cleary shows
that knowing neighbor signals of a given node can help predict next value of the node.

Although GCN is able to transfer a given signal of a vertex to a latent representation that is more
compact and expressive, it is difficult to learn a mapping function to the data quality level from
neighbor signals directly unlike DQ-LSTM which pre-transfers the signals to local variations explicitly.
In other word, given signal X , what GCN learns is w = f(X) where w is the data quality we want to
infer from data, however, DQ-LSTM learns w = g(Y = h(X)) where Y is a local variation matrix
given by X in a closed form, h. Thus, lower MAEs of DQ-LSTM verify that our assumption in
Section 2 is valid and the local variations are a useful metric to measure the data quality level. It is
also noticeable that DQ-LSTM with a GCN reports the lowest MAE among other models. This is
because the additionally trainable parameters in GCN increase the number of nodes to compute better
local variations.

1https://www.wunderground.com/
2http://weather.weatherbug.com/
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