
Graphite: Iterative Generative Modeling of Graphs

Aditya Grover*
Stanford University

adityag@cs.stanford.edu

Aaron Zweig*
Stanford University

azweig@cs.stanford.edu

Stefano Ermon
Stanford University

ermon@cs.stanford.edu

Abstract

Graphs are a fundamental abstraction for modeling relational data. However, graphs
are discrete and combinatiorial in nature, and learning representations suitable for
machine learning tasks poses statistical and computational challenges. In this
work, we propose Graphite an algorithmic framework for unsupervised learning
of representations over nodes in a graph using deep latent variable generative
models. Our model is based on variational autoencoders (VAE), and differs from
existing VAE frameworks for data modalities such as images, speech, and text
in the use of spectral graph convolutions for parameterizing both the generative
model (a.k.a. decoder) and inference model (a.k.a. encoder). The use of graph
convolutions directly incorporates inductive biases specific to graphs, such as
permutation invariance to node orderings and locality preference for clustering
node representations, in the generative model. We demonstrate empirically that
Graphite outperforms state-of-the-art approaches for representation learning over
graphs for the task of link prediction on benchmark datasets.

1 Introduction

Latent variable generative modeling is an effective approach for unsupervised representation learning
of high-dimensional data [11]. In recent years, representations learned by latent variable models
parameterized by deep neural networks have shown impressive performance on many tasks such
as semi-supervised learning and structured prediction [6, 16]. However, these successes have been
restricted to specific data modalities such as images and speech. In particular, current deep generative
models cannot be directly applied to graph-structured data. Graphs arise in a wide variety of domains
in physical sciences, information sciences, and social sciences, and consequently algorithms for
unsupervised representation learning of such data have several downstream applications, including
node classification, link prediction, and community detection [3, 10, 4].

In recent works, the notion of spectral graph convolutions has been the guiding principle for designing
neural network architectures that can directly operate on graphs [1, 2]. A spectral graph convolution
is defined as the multiplication of a signal (i.e., feature matrix associated with the nodes) with a
parameterized filter, in the Fourier space of a graph. Graph convolution networks (GCN), in particular,
efficiently compute local first-order approximations to spectral graph convolutions, and have been
successfully applied across several graph mining tasks such as semi-supervised learning and relational
learning [9]. Such tasks involve encoding an input graph to a final output representation (such as the
labels associated with the nodes) with potentially more intermediate layers. The inverse problem of
learning to decode a hidden representation into a graph, as in the case of a latent variable generative
model, is to the best of our knowledge largely an open question that we address in this work.

We propose Graphite, a framework for iteratively learning latent variable generative models of
graphs. Specifically, we learn a directed model expressing a joint distribution Pθ(A,Z) over the
adjacency matrix of a graph A ∈ {0, 1}n×n and a latent feature matrix Z ∈ Rn×k such that every
row corresponds to a feature vector for a node in the graph. The multi-layer iterative decoding

*Equal Contribution.

Workshop on Deep Learning for Physical Sciences (DLPS 2017), NIPS 2017, Long Beach, CA, USA.

process for specifying the conditional distribution Pθ(A|Z) first constructs an intermediate graph
using an inner-product operation followed by a sequence of graph convolutional layers on this
intermediate graph. We learn the model parameters θ by maximizing a variational lower bound to the
log-likelihood assigned by the model to the observed graph. Our empirical evaluations show that
Graphite outperforms competing algorithms for the task of link prediction on benchmark datasets.

2 Learning framework

We first define some notation and give a brief background on spectral graph convolutions before
presenting Graphite. Consider an undirected graph G = (V,E) where V and E denote the set of
nodes and edges respectively. We represent the graph using an adjacency matrix A ∈ {0, 1}n×n
where n = |V | and diagonal entries Aii = 1. Additionally, we denote the feature matrix associated
with the graph as X ∈ Rn×m for an m-dimensional signal associated with each node in the graph. If
there are no explicit node features, we set X = In (identity). Let D be the diagonal degree matrix
such that Dii =

∑
(i,j)∈E Aij and hence the graph Laplacian L = D−A. We define Ã to be the

symmetric normalization of A given by Ã = D−1/2AD−1/2.

The Fourier basis of a graph is given by the eigenvector matrix of the graph Laplacian. A spectral
graph convolution convolves the feature matrix X with a parameterized filter Fθ = diag(θ) (where
θ ∈ Rn are the learned parameters), defined as a matrix multiplication in the Fourier basis of the
graph. Formally, we define the graph convolution operation between Fθ and X for the graph A as:

Fθ ∗X = UFθU
TX

where U is the eigenvector matrix for the graph Laplacian, i.e., L = UΛUT where Λ is the
diagonal matrix of eigenvalues. Since eigendecomposition of the graph Laplacian is computationally
prohibitive, [9] propose a local first-order approximation:

Fθ ∗X ≈ D−1/2AD−1/2X.

Extending the above approximation to a neural network design with several filters applied in each
layer, we get the layerwise propagation rule for l ≥ 1 a graph convolutional network (GCN):

H(l) = η(D−1/2AD−1/2H(l−1)Θ(l))

where H(l) and H(l−1) are the l-th and l − 1-th layers of the GCN with the base case H(0) = X,
Θ(l) is a matrix of learnable parameters for the current layer, and η is a suitable activation function.
For brevity throughout the paper, we will denote the propagation rule as:

H(l) = GCNη,l(A,H
(l−1)).

An alternate interpretation of a GCN layer is performing message passing over a graph using the
Weisfeiler-Lehman (WL) algorithm [18]. Intuitively, every node in the graph passes ‘messages‘ or
information about its local structure to its neighbors. For a single GCN layer, the messages are passed
to neighbors at a 1-hop distance from the node. In a multi-layer GCN with L-layers, information is
propagated to neighbors up till an L-hop distance from the source. Refer to [9] for more details.

2.1 Graphite Variational Autoencoder

We use upper-case symbols to denote probability distributions and assume they all admit absolutely
continuous densities (denoted by the corresponding lower-case notation) on a suitable reference
measure. We are interested in learning a latent variable model that specifies a joint distribution
Pθ(A,Z|X) conditioned on the feature matrix X of a graph A and latent variable matrix Z ∈ Rn×k
where every row corresponds to a latent vector for a node in the graph. Similar to a variational
autoencoder [7], our learning objective maximizes an evidence lower bound (ELBO) to the log-
likelihood of the observed graph A:

log pθ(A|X) ≥ Eqφ(Z|A,X)

[
log

pθ(A,Z|X)

qφ(Z|A,X)

]
where qφ(Z|A,X) is a variational approximation to the true posterior pθ(Z|A,X), parameterized by
φ. We specify an isotropic standard Gaussian prior over Z such that the joint distribution factorizes as
Pθ(A,Z|X) = Pθ(A|Z,X)P (Z). The observation model Pθ(A|Z,X) and the variational posterior
Qφ(Z|A,X), also referred to as the encoders and decoders respectively, are specified using deep
neural networks. In particular, we use graph convolutional networks as described below.

2

Table 1: Area Under the ROC Curve (AUC) scores for link prediction (* denotes dataset with features)
PPI Cora Citeseer Pubmed Cora* Citeseer* Pubmed*

SC 84.2± 0.34 89.9± 0.20 91.5± 0.17 94.9± 0.04 - - -
DW 68.2± 0.08 85.0± 0.17 88.6± 0.15 91.5± 0.04 - - -
GAE 88.8± 0.01 90.2± 0.16 92.0± 0.14 92.5± 0.06 93.9± 0.11 94.9± 0.13 96.8± 0.04

VGAE 89.5± 0.07 90.1± 0.15 92.0± 0.17 92.3± 0.06 94.1± 0.11 96.7± 0.08 95.5± 0.13

Graphite-AE 91.1± 0.05 91.4± 0.16 92.5± 0.16 94.5± 0.05 94.4± 0.10 94.6± 0.25 97.8± 0.03
Graphite-VAE 91.2± 0.05 91.4± 0.16 93.0± 0.12 94.6± 0.04 94.7± 0.09 97.2± 0.08 97.4± 0.04

Table 2: Average Precision (AP) scores for link prediction (* denotes dataset with features)
PPI Cora Citeseer Pubmed Cora* Citeseer* Pubmed*

SC 88.9± 0.21 92.8± 0.12 94.4± 0.11 96.0± 0.03 - - -
DW 69.0± 0.09 86.6± 0.17 90.3± 0.12 91.9± 0.05 - - -
GAE 89.4± 0.05 92.4± 0.12 94.0± 0.12 94.3± 0.5 94.3± 0.12 94.8± 0.15 96.8± 0.04

VGAE 89.6± 0.05 92.3± 0.12 94.2± 0.12 94.2± 0.04 94.6± 0.11 97.0± 0.08 95.5± 0.12

Graphite-AE 92.1± 0.05 92.4± 0.17 93.5± 0.19 95.7± 0.06 94.6± 0.11 94.3± 0.26 97.7± 0.03
Graphite-VAE 92.2± 0.06 93.1± 0.13 94.6± 0.12 96.0± 0.03 95.1± 0.08 97.3± 0.08 97.4± 0.04

Encoder. The encoder Qφ(Z|A,X) is a factorized multivariate Gaussian distribution specified
using a multi-layer GCN, referred as EGCN (Encoder-GCN). In our experiments, we use two layers
for the encoder and a multivariate Gaussian posterior with diagonal covariance. Hence, the forward
pass is given by:

H(1)
e = EGCNη1,1(A,X)

µq, log σq = EGCNη2,2(A,H(1)
e)

where η1 is any activation function and η2 is set to identity (no activation) to search the full range of
possible parameters for the Gaussian posterior.

Decoder. The decoder Pθ(A|Z,X) is a factorized Bernoulli distribution also specified using a
multi-layer GCN, referred as a DGCN (Decoder-GCN). However, we do not have access to an explicit
graph to perform graph convolutions unlike an EGCN that could directly access A. We resolve this
shortcoming by generating intermediate graphs using a similarity matrix that is a function of the
latent feature matrix Z ∼ Qφ(Z|A,X). The forward pass for the two-layer decoder is specified as:

Â = σ(ZZT)

H
(1)
d = DGCNη1,1(Â, [Z|X])

Z∗ = DGCNη2,2(Â,H
(1)
d)

where η1 is any suitable activation function and η2 is the identity (such that Z and Z∗ can take the
same range of values) and the vertical bars denote concatenation of the original feature matrix X
with Z. For the final step of the decoding, we obtain the desired conditional distribution pθ(A|Z,X)
with an inner product over a feature matrix specified as the convex combination of Z and Z∗.

Z′ = λZ + (1− λ)Z∗
pθ(A|Z,X) = Πn

i=1Πn
j=1pθ(Aij |Z,X)

where pθ(Aij |Z,X) = σ(Z′iZ
′
j).

Here, Z′i denotes the i-th row of Z′ and λ ∈ [0, 1] is a tunable hyperparameter.

2.2 Graphite Autoencoder

Similar to the differences between a standard autoencoder (AE) and a variational autoencoder, the
EGCN here directly represents Z (instead of a variational posterior). Additionally, the learning
objective minimizes the cross-entropy between the reconstructed graph probabilities and true graphs.

3

(a) Graphite-AE (b) Graphite-VAE

Figure 1: t-SNE embeddings of the latent feature vectors for the Cora dataset. Colors denote labels.

3 Experimental Evaluation

We consider the task of link prediction [11]. Even though Graphite learns a distribution over graphs,
it can be used for predictive tasks within a single graph. In the case of link prediction, we learn a
model for a random, connected training subgraph of the true graph. For validation and testing, we
add positive and negative (false) edges to the original graph and evaluate the performance of the
model based on the reconstruction probabilities assigned to the validation and test edges (similar to
denoising of the input graph). In our experiments, we held out a set of 5% edges for validation, 10%
edges for testing, and train all models on the remaining subgraph.

We evaluate performance based on the Area Under the ROC Curve (AUC) and Average Precision
(AP) metrics. Additionally, the validation and testing sets also each contain an equal number of
non-edges. We compared across four standard benchmark datasets: a Protein-Protein Interaction
(PPI) network for Homo Sapiens [17, 5] with proteins as nodes and interactions as edges, and three
citation networks Cora, Citeseer, and Pubmed with papers as nodes and citations as edges [15]. For
the citation networks, the text in the papers can be synthesized into optional node features.

For Graphite-AE and Graphite-VAE, we used an architecture of 32-32 units for the encoder and
16-32-16 units for the decoder trained using the Adam optimizer [7] with a learning rate of 0.01. The
dropout rate (for edges) and λ were tuned as hyperparameters on the validation set to optimize the
AUC. Additionally, we trained every model for 500 iterations and used the model checkpoint with
the best validation loss for testing. We evaluated Graphite-VAE and Graphite-AE against competing
methods for representation learning on graphs. The baselines we consider are Spectral Clustering
(SC) [1], DeepWalk (DW) [14], Graph Autoencoder [8], and Variational Graph Autoencoder [8].

We used the SC implementation from [13] and public implementations for others made available by
the authors. For SC, we used a dimension size of 128. For DW which uses a skipgram like objective
on random walks from the graph, we used the same dimension size and default settings used in the
paper of 10 random walks of length 80 per node and a context size of 10. For GAE and VGAE, we
used the same architecture as VGAE and Adam optimizer with learning rate of 0.01. Note that SC
and DW do not provide the ability to incorporate node features while learning embeddings, and hence
we evaluate them only on the featureless datasets. GAE and VGAE are a special case of Graphite,
using only a single inner-product decoder (i.e., λ = 1).

The AUC and AP results (along with standard errors) are shown in Table 1 and Table 2 respectively
averaged over 50 random train/validation/test splits. On both metrics, Graphite-VAE gives the
best performance overall. Graphite-AE also gives good results, generally outperforming its closest
competitor GAE. We further visualize the embeddings generated by a 2D t-SNE projection [12] of
the latent feature vectors (given as rows for Z′ with λ = 0.5) on the Cora dataset in Figure 1. Even
without any access to label information for the nodes during training, the Graphite models are able to
cluster the nodes (papers) as per their labels (paper categories).

4

References
[1] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral networks and locally connected

networks on graphs. In ICLR, 2013.

[2] M. Defferrard, X. Bresson, and P. Vandergheynst. Convolutional neural networks on graphs
with fast localized spectral filtering. In NIPS, 2016.

[3] D. Easley and J. Kleinberg. Networks, crowds, and markets: Reasoning about a highly connected
world. Cambridge University Press, 2010.

[4] S. Fortunato. Community detection in graphs. Physics reports, 486(3):75–174, 2010.

[5] A. Grover and J. Leskovec. node2vec: Scalable feature learning for networks. In KDD, 2016.

[6] D. P. Kingma, S. Mohamed, D. J. Rezende, and M. Welling. Semi-supervised learning with
deep generative models. In NIPS, 2014.

[7] D. P. Kingma and M. Welling. Auto-encoding variational bayes. In ICLR, 2014.

[8] T. N. Kipf and M. Welling. Variational graph auto-encoders. arXiv preprint arXiv:1611.07308,
2016.

[9] T. N. Kipf and M. Welling. Semi-supervised classification with graph convolutional networks.
In ICLR, 2017.

[10] D. Liben-Nowell and J. Kleinberg. The link-prediction problem for social networks. journal of
the Association for Information Science and Technology, 58(7):1019–1031, 2007.

[11] J. C. Loehlin. Latent variable models: An introduction to factor, path, and structural analysis.
Lawrence Erlbaum Associates Publishers, 1998.

[12] L. v. d. Maaten and G. Hinton. Visualizing data using t-sne. Journal of Machine Learning
Research, 9(Nov):2579–2605, 2008.

[13] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, et al. Scikit-learn: Machine learning in python. Journal
of Machine Learning Research, 12(Oct):2825–2830, 2011.

[14] B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk: Online learning of social representations. In
KDD, 2014.

[15] P. Sen, G. M. Namata, M. Bilgic, L. Getoor, B. Gallagher, and T. Eliassi-Rad. Collective
classification in network data. AI Magazine, 29(3):93–106, 2008.

[16] K. Sohn, H. Lee, and X. Yan. Learning structured output representation using deep conditional
generative models. In NIPS, 2015.

[17] C. Stark, B. J. Breitkreutz, T. Reguly, L. Boucher, A. Breitkreutz, and M. Tyers. Biogrid: A
general repository for interaction datasets. Nucleic Acids Research, 34:535–539, 2006.

[18] B. Weisfeiler and A. Lehman. A reduction of a graph to a canonical form and an algebra arising
during this reduction. Nauchno-Technicheskaya Informatsia, 2(9):12–16, 1968.

5

	Introduction
	Learning framework
	Graphite Variational Autoencoder
	Graphite Autoencoder

	Experimental Evaluation

