
Tips and Tricks for Training GANs with Physics
Constraints

Luke de Oliveira
Vai Technologies & Lawrence Berkeley National Laboratory

lukedeo@vaitech.io

Michela Paganini
Yale University & Lawrence Berkeley National Laboratory

michela.paganini@yale.edu

Benjamin Nachman
Lawrence Berkeley National Laboratory

bnachman@cern.ch

Abstract

Generative Adversarial Networks (GANs) have seen immense interest and success
in recent years. However, most tasks and successes have existed solely within the
domain of natural images. In contrast, we provide an overview of modifications
and tricks necessary to make GANs work on data from high energy particle physics.
We provide select examples of domain-specific thought processes with respect to
improving GAN training procedures, aiming to be a resource for researchers in any
physical or applied science wishing to apply Generative Adversarial Networks to a
choice problem.

1 Introduction

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) provide a game theoretic basis
for learning a target distribution pdata(x) that has gained popularity in recent years. Subsequently, the
usage of generative modeling in the natural sciences has been gaining popularity, with applications in
Cosomology (Mustafa et al., 2017), High Energy Particle Physics (de Oliveira et al., 2017b; Paganini
et al., 2017; de Oliveira et al., 2017a), Geology (Chan and Elsheikh, 2017), and Astronomy (Schaw-
inski et al., 2017), among others. A common thread among scientific applications is the notion of
acceleration - that is, the utilization of a GAN as a fast sampling method or surrogate to circumvent
traditional scientific simulators when the highest fidelity is not required. Although there has been
significant preliminary success, these methods still suffer from traditional failure modes that plague
GANs (Goodfellow, 2014; Nowozin et al., 2016; Salimans et al., 2016). In fact, many issues that arise
in the physical sciences, such as sparsity(Paganini et al., 2017), location dependence (de Oliveira
et al., 2017b), and multi-scale behavior across orders of magnitude (Mustafa et al., 2017), can directly
exacerbate pre-existing failure modes if not handled carefully.

In this overview, we document select observations, tips, and tricks from the literature that other
researchers may find useful while training GANs for scientific data. We pay special attention to
implementation details that may get traditionally glossed over, as these insights and tricks are often
critical to obtaining usable results. This workshop contribution summarizes empirical techniques that
have been extensively tested in related works. We omit the details of the experimentation in favor of
a concise collection of tips and tricks for researchers.
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This exposition is organized as follows. Section 1.1 provides a very brief introduction to GANs,
Section 2 describes a solution to model sparsity in scientific data, Section 3 poses an attribute
conditioning problem in the context of interpolation, and finally, Section 4 mentions some brief
observations around training procedures given the observations in Sections 2 and 3.

1.1 Generative Adversarial Networks

Generative Adversarial Networks cast the task of training a deep generative model as a two-player
non-cooperative minimax game in which both players are parameterized as deep neural networks.
In particular, a generator network is tasked with mapping a latent prior z ∼ pz(z), z ∈ Z to a
reputable synthetic sample that a discriminator network is unable to distinguish as being a real (from
pdata(x)) or fake sample. Though GANs can be shown to minimize a quantity closely related to the
Jensen-Shannon divergence, they suffer from a variety of issues related to mode collapse, instability,
and lack of reliable metrics.

We now dive in to specific qualities, specifically around image-based representations in the sciences,
that are unique for building GANs.

2 Sparsity

In direct opposition to natural images, most data from the sciences is inherently sparse. Even though
GANs are not directly designed for this, previous work (de Oliveira et al., 2017b; Paganini et al.,
2017; de Oliveira et al., 2017a) has explored this and multiple solutions have been proposed different
solutions. A simple approach is to utilize Rectified Linear Units (ReLU) (Maas et al.) to directly
induce sparsity in an output layer. However, since ReLU units produce sparse gradients in the
generator, care must be given to the training procedure, which is highlighted in in Section 4.

Though utilizing ReLU pointwise nonlinearities induces sparsity, we have no guarantees as to whether
or not each generated sample is sparse with an occupancy commensurate with the distribution of
sparsity over a full data distribution. A simple solution is to design a quantity closely related to
sparsity that the discriminator can utilize to encourage the generator to produce samples at an adequate
sparsity. A suggested quantity (de Oliveira et al., 2017a) is defined as follows
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where α, β > 0 and X ∈ Rm×n. In addition, all powers and | · | operators are assumed to act
pointwise on X , and ‖ · ‖1 is the entry-wise 1-norm rather than the induced norm. Examining Eqn. 1,
we note that softsparsity : Rm×n −→ [0, 1], and that in the limit as
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which is the standard definition of sparsity (or occupancy).

Augmenting the discriminator with this value for generated and data samples allows the discriminator
to feed gradient information to the generator. However, we can go one step further and include a
minibatch discrimination (Salimans et al., 2016) layer acting just on this value across a minibatch,
encouraging the generator to correctly reproduce the distribution of sparsity.

3 Attribute Conditioning

For most scientific applications such as High Energy Physics and Cosmology, we need to not only
learn pdata(x), but also approximate pdata(x|ξ), where ξ is a vector of conditioning attributes. This
is crucial for most scientific applications, where ξ is of theoretical importance to be able to either
condition on or interpolate between.

With respect to parameter interpolation, we assume we have parameters ξ which we would like to
interpolate between. Formally, we have a set of values of ξi ∈ Ξ, with the key property that Ξ is
finite and is sparsely sampled. We would like to, for any ξ∗ ∈ Conv(Ξ), be able to directly sample
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from this continuous distribution. This allows dense interpolation in spite of finite samples in a
conditioning space.

In this case, categorical conditioning can be taken care of using traditional methods (Mirza and
Osindero, 2014; Odena et al., 2016). For continuous values, a simple methodology to condition on
continuous characteristics is designed. A separate output/submodel of the discriminator, h(x), is
tasked with reconstructing each element of ξ. Define individual distances di(h(x)i, ξi) where the
index i tracks each feature in conditioning space. We can the require both the discriminator and
generator to minimize

Lconditional =

dim(ξ)∑
i=1

λidi(h(x)i, ξi), (3)

where the λi are hyperparameters dictating scaling and relative importance of one vectorial compo-
nents’ loss with respect to the remaining components (de Oliveira et al., 2017a) losses.

4 Training

We now turn to high level observations of training procedures for GANs on scientific data. As noted
in Section 2, image-represented data from natural sources tends to be quite sparse. In addition, pixel
intensities can span many more orders of magnitude than natural images. This necessitates paying
close attention to gradient properties and batch sizes. Sparse images with high dynamic range require
a larger batch size in order to smooth out gradients during each update step because most parameters
receive no update in a small batch. In addition, the sparsity levels in images can very easily lead to a
truth bit being present in generated samples. To solve this, and to discourage this violation of the
generator distribution being absolutely continuous with respect to pdata (Nowozin et al., 2016), label
flipping is used in order create more overlap.

For scientific applications, complete exploration of the data support is essential for any GAN-based
system to be useful. Inasmuch as it directly encourages this behavior through batch-level statistics,
minibatch discrimination (Salimans et al., 2016) has proven useful to aid in this direction.

Note that many of the observations mentioned in this exposition are irrespective of GAN formulation.
Recent work examining alternative divergences for training GANs (Arjovsky et al., 2017; Bellemare
et al., 2017; Gulrajani et al., 2017) is completely compatible with the observations elucidated upon
here. In particular, although recent work has suggested that most GAN formulations are empirically
equivalent (Lucic et al., 2017), we posit that an additional dimension of importance in understanding
trade-offs of different GAN formulations should be the transferability and utility in transfer learning
or simulator settings, as this provides an application-specific notion of coverage and quality.

5 Conclusion

We have provided a brief exposition into some considerations in applying Generative Adversarial
Networks in scientific settings. In particular, we highlighted a subset of ways in which domain
understanding, coupled with understanding of GAN dynamics, can lead to improvements to enable
progress in fields which use generative modeling as a tool. We hope this exposition will be useful to
researchers who work in science as both a reference and inspiration to think creatively about unique
problem constraints and how to design good algorithms to either take advantage of or accommodate
the nature of domain data.
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